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INTRODUCTION 
 
The American Cancer Society estimated that there would be approximately 230,110 new cases 
diagnosed and approximately 29,900 prostate cancer related deaths in 2004 [1]  Prostate cancer 
screening today generally uses the Prostate Specific Antigen (PSA) blood testing, free PSA testing 
and Digital Rectal Examination (DRE). When using a ‘cutoff’ of PSA > 4.0 ng/mL and an abnormal 
DRE, sensitivity, specificity and Positive Predictive Value (PPV) are 38%, 88% and 56% 
respectively [2]. When either an elevated PSA or an abnormal DRE are used, (in isolation – not in 
combination), sensitivity, specificity and PPV are even lower [2]. When the PSA is used there exists 
a significant gray area (4 - 10 ng/mL) in which cancers may be missed and yet the number of 
negative biopsies is large. Even though cancer detection sensitivity, specificity and PPV are 
improved by combining PSA and DRE [2, 3] the usefulness of DRE remains fundamentally limited 
due to its subjective nature. Additionally, DRE is practically limited to the detection of shallow 
(subcapsular) palpable abnormalities. Even systematic multi-core biopsy fails to detect clinically 
detectable cancers in up to 34% of men [4]. However, there is evidence that as additional biopsies 
cores are added, sensitivity improves [5]. This observation has resulted in an increase the number 
of cores taken during routine examination. Nevertheless, biopsy-based detection sensitivity remains 
less than ideal. Thus, there is plenty of compelling clinical interest in finding improved methods for 
the early diagnosis of prostate cancer with improved sensitivity and specificity. One recent example 
of progress in the field of prostate cancer detection involves an effort to automate the DRE 
examination. Savazyan recently described a system for 'mechanical imaging' of the prostate [6]. 
This system comprises a rectal probe that is instrumented with an array of pressure sensing strain 
gages and a 3D magnetic positioner device. In an in vitro trial [7], the new system correctly detected 
and located 100% of the nodules under examination. This compares with detection rates of 83% 
and 67% for an experienced urologist and a student respectively. Thus, a significant improvement 
over the conventional DRE examination has been demonstrated for the in vitro case. Another recent 
development is the observation that the sensitivity of an ultrasound examination can be improved by 
the use of a microbubble based contrast agents [4]. Frauscher's approach [4] involved the use of 
contrast agent enhanced Color Doppler that improved the detection of hypervascular regions 
associated cancer. Prostate cancer was detected by contrast agent assisted ultrasound in 23 of 24 
patients known to have prostate cancer. (The method used for determining definitively which 
patients had cancer is not entirely clear in the article.) In comparison, conventional ultrasound 
detected cancer in 17 patients. The contrast agent assisted approach detected cancer in 8 patients 
with a negative systematic biopsy-based diagnosis. However, the cost of the contrast agent used in 
this study was $65 per patient. This cost makes up approximately half of the cost of a conventional 
ultrasound examination and therefore represents a considerable impediment to its widespread 
acceptance. However, more recent publications [8, 9] (including one from Frauscher's group) cast 
doubt on the true extent of the improvement in diagnostic accuracy obtained by using contrast 
agents. Specifically, Halpern was unable to detect cancers in the inner gland and achieved a cancer 
detection sensitivity of only 42% [8]. 
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BODY 
 
The work conducted as part of this Army funded program can be considered as divided into the following key 
“Aims”: 

1. Research, design, development and prototype testing of a new transrectal ultrasound transducer, 
syringe pump and ultrasound instrumentation to facilitate a Synthetic Digital Rectal Examination 
(SDRE). 

2. Research, development and prototype testing of techniques to enable quantitative (dimensionally 
accurate) 3D reconstructions of the prostate 

3. Research, development and test of techniques to improve ultrasound image quality and to facilitate 
automated (or semi-automated) border detection of lesions 

4. Small scale clinical test at the University of Virginia 
 
Progress has been made in each of these tasks in the second year of the grant. The work is on-track. 
(The fourth section of work, the small scale clinical test, will occur in the third year of the grant.) 
 
Progress with respect to the areas are related directly to the committed Statement of Work that was funded: 
 
Aim 1. Design, specify, and have built, a high resolution transducer optimized for imaging 
elastic inhomogeneities, unsurpassed B-Mode image resolution and possessing integrated 
3D capability. 
A high frequency (8-14 MHz) transducer array was designed and specified as committed in Year 1. 
Vermon SA, Tours, France made the transducer and it was delivered in Q1 2005. The transducer 
has two tracking arrays each with 32 elements and a central imaging array with 192 elements. The 
elements are spaced on a 0.2 mm pitch. This transducer is providing unsurpassed imaging 
resolution in a transducer housing designed for transrectal ultrasound. The transducer will provide 
the very best image data as a solid foundation for the subsequent work elements. This transducer is 
operable at up to 14MHz whereas the previously available transducer was only operable up to 8 
MHz. Consequently, we are observing excellent, and significant, improvements in image resolution. 
 
Aim 2. Develop and test a tissue elasticity imaging system.  
As committed, we have assembled the apparatus to enable the new approach to transrectal 
ultrasound based strain imaging. (Most of this work was completed in Year 1.) We have also 
fabricated several custom prostate phantoms using locally developed techniques [10]. By making 
the phantoms internally, we are able to iterate efficiently the design and also to fabricate 
replacement phantoms at very low cost in a timely manner. Phantoms tend to deteriorate over time 
due to dehydration through the membranes. We have tested the tissue elasticity system using both 
an older 8 MHz transrectal transducer and the newer 14 MHz transducer connected to our Siemens 
Sequoia ultrasound machine. Our techniques can be migrated to other ultrasound systems if 
resource and contractual issues are addressed. 
 
The deliverable for this phase is complete as of the end of Year 2 work and a validated (phantom) 
elasticity imaging system using the approach presented in the proposal has been produced. We 
have verified our ability to obtain very fine resolution 3D reconstructions and fine resolution elasticity 
images using the newly completed tissue elasticity system.
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Aim 3. Apply image processing algorithms to acquired B-Mode and elasticity images to 
improve the quantification of detected elastic inhomogeneities  
 
We have developed 3D surface rendering from 2D slices by implementing a 3D gradient vector flow 
(GVF) snake algorithm [11].  The algorithm relies on the edges to be well delineated and contrast 
between the various regions to be well defined in each 2D ultrasound slice to produce a surface that 
resembles the actual scanned object.  A preprocessing despeckling step is needed to reduce the 
variances in pixel values within homogeneous regions.  We have evaluated a wide variety of well 
known methods and a novel stochastically driven method design specifically for 3D surface 
rendering from 2D slices of the prostate and other organs.  The method we develop specifically for 
the task of this grant is a stochastically driven compression filter called the squeeze box filter (SBF).  
Our quantitative evaluation using a Field II [12] simulated B mode ultrasound image with contrast 
enhancement performance determined by a modified Fisher discriminant has determined that the 
newly developed SBF method outperformed the other methods and is exceptional in providing the 
needed intraregion reduction in variance and inter-region contrast enhancement with computational 
efficiency. 
 
Excellent progress with respect to Aim 3 has been made in the second year of the grant. 
 
The fourth Aim from the Statement of Work relates to a small scale clinical validation in 
collaboration with partially funded University of Virginia collaborator – Dr. Dan Theodorescu. This 
item of work will be addressed in the final year of the grant. 



 
Summary Statement of work completed to date:  
 
(Comprises part of work included as Appendix plus recent image processing results.)  
 
Prostate Phantom 
 
A purpose-built prostate phantom was designed using the method described in Negron et al. [10]. 
A simulated lesion (approximately 0.3 ml) was formed inside of an egg-shaped tissue region 
mimicking a prostate. A cylindrical cavity (20 mm in diameter) was formed to mimic the anal 
opening and to allow access for the transrectal transducer. A hypoechoic gel component 
surrounds these three components. (Strictly speaking, the surrounding gel should be echogenic 
too but the lack of echoic inclusions is immaterial in our phantom studies.) The lesion is made of 
17% (by weight) acrylamide gel; the tissue and exterior component are made of 5% acrylamide 
gel. Thus, the lesion is perceptibly stiffer (approximately 10 times stiffer ) than both the egg 
shaped tissue region and the exterior gel component. A similar concentration (by volume) of 
Sephadex was added to both the lesion and the tissue, resulting in similar ultrasound image 
intensity in these two structures (The lesion was made slightly brighter than the tissue in order to 
assist navigation during scanning.) A B-mode ultrasound image of the prostate is shown in Fig. 1. 
The lesion in the image is almost isoechoic. This phantom is similar to ones we have made since 
the beginning of the project. 
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Fig. 1.   Left:  Schematic of the transrectal design of prostate phantom. Right: An 
ultrasound image of the phantom.  

 
 

Transducer 
 
Vermon SA, Tours, France fabricated an 8-14MHz transrectal transducer to our specification. This 
was delivered in Q1 2005. Most prostate transducers used today in premium ultrasound scanners 
use a tightly curved array placed on the end of the transrectal probe. Thus, these probes have 
limited aperture contribution to image resolution at any particular point in the image field. However, 
this new transducer has a linear array format and hence has a longer available aperture that results 
in finer lateral resolution. Thus, we believe that this transducer’s imaging resolution is practically 
unmatched in the field of prostate ultrasound. Image resolution is approximately 0.2 mm lateral and 
0.1 mm in the axial (range) dimension. The array pitch is 0.2 mm. There are 192 elements in the 
imaging array and 32 elements in each of the two perpendicular tracking arrays that provide the 
transducer with “I-Beam” 3D tracking [13]. This form of 3D tracking yields approximately 4.6% 
accuracy at the two standard deviation level. (95% of measurements will be within 4.6%.) The I-
Beam transducer is also uniquely matched to the transrectal prostate ultrasound application for the 
following reasons: a) the transrectal probe with the tracking mechanism near the transducer 
minimizes numerical ill-conditioning that may arise if the means of tracking is separated from the 
imaging array, and b) the I-Beam transducer estimates the relative tissue motion rather than 
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absolute tissue motion, which enables efficient and accurate measurements even if there is patient 
motion of the type that can defeat a 3D system that uses a fixed origin for 3D positioning (eg. 
Magnetic-based, optical-based, or articulated arm-based positioner.) 
 
The newly developed transducer required new software drivers to be developed to enable it to “run” 
on our Siemens Sequoia research scanner. One graduate research assistant (Yinbo Li) spent the 
summer of 2005 at Siemens Engineering in Mountain View, CA, developing the required software 
with assistance from Siemens Engineering Staff – primarily Greg Holley. Siemens assisted with 
costs associated with this development. Siemens Engineering also performed ultrasound output 
intensity measurements to verify that the transducer satisfies current FDA regulated intensities 
(primarily that Mechanical Index (MI) <= 1.9). While the transducer was having software 
development, we also took advantage of the opportunity to add a contrast agent imaging mode for 
potential future work in this area. Contrast Pulse Sequences [14] was implemented on the 
transducer. It is intended that this will enable future work that might be based on measuring 
perfusion in prostate or locating the presence of molecular targeted ultrasound contrast. These 
applications are beyond the scope of the currently funded work and will not be pursued without 
future funding and any requisite permission. 
 
The transducer, system and phantom are assembled into a complete working 3D scanning / 
elastographic system by adding a latex sheath over the transducer (secured with elastic bands), 
Tygon™ flexible plastic tubing and syringe pump to controllable inflate the sheath with plain tap 
water. When these components are assembled we have the basic apparatus for the “Synthetic 
Digital Rectal Examination” described in the proposal.  The programmable syringe pump is a 
Harvard Instruments PHD 2000, (Harvard Apparatus, Holliston MA).  This pump enables automatic 
water inflation and can generate a quasistatic stress and produce as uniform tissue deformation as 
possible. A syringe volume of 60 ml was chosen to provide sufficient water to compress and deform 
the rectal wall thus providing an optimal tissue strain. This volume is also appropriate in that when 
used in a clinical setting, the ultimate size of the syringe makes the water injection process safe in 
that the syringe is emptied before any patient injury could be anticipated. We have recently 
discovered that other research groups have also adopted a somewhat similar balloon inflation 
method but that these earlier efforts use a manually operated syringe  [15, 16].  
 
 

 
Fig. 2.  The transrectal transducer is covered with a latex condom. Water was inflated by 

the syringe during imaging 
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Tracking arrays

Fig. 3. I-Beam transducer – possessing a main imaging array in the center and a 
tracking array in each end 
  
Five elevational slices each comprising of 100 Sequoia 14 MHz  In-phase/Quadrature (I/Q) data 
frames were acquired during the in-vitro experiment using an incremental strain between the 
consecutive frames of  0.04 %. Total applied strain between the first and the last frame was 
approximately 4 %. This strain is broadly in accordance with the degree of strain that has been found 
to be optimal for strain imaging [17].An example B-mode image obtained by the transrectal I-Beam 
transducer is shown in Fig. 4. 

 

 

lesion-mimicking 
inclusion 

T IT 
Fig. 4. A B-mode image acquired with the I-Beam transrectal transducer from the 
prostate-mimicking phantom, showing the layout of image planes formed by 
‘Tracking’ arrays and ‘Imaging’ array. ‘T’ – tracking array, ‘I’ – main imaging array. 
Delineated is a lesion-mimicking inclusion. 

 
 

Elasticity Calculation and 3D Reconstruction 
 
The acquired IQ data were filtered using a low-pass filter to reduce jitter, electronic noise, and out-of 
band noise. Six pairs of frames with differential strain of 2% were tracked using a time-domain 
cross-correlation technique. Signal “companding” or stretching was employed to maximize the 
cross-correlation coefficient between the pre- and the post-compression frames. Companding 
techniques improve contrast to noise ratio of the strain images. This improvement is desirable as 
the prostate lesions are known to be twice or at most thrice stiffer than the prostate. Sub-sample 
precision was obtained in the delay estimates by using a quadratic fit to the cross-correlation 
function.  A search window of approximately 5 wavelengths was used for time-delay estimation. 
Lateral motion was tracked using the technique described by Lubinski et al.[18]. Displacement 
estimated from these six different renditions were averaged to eliminate uncorrelated random noise. 
Strain estimates were then obtained by taking the local gradient of the displacement image (in axial 
direction). The above process was repeated by sweeping the transducer in the elevational direction 
and six elevational slices were obtained. In the elevation direction, the inter-slice distance was 
estimated with a block matching approach based upon the minimum sum of absolute differences 
(MSAD) algorithm of the I-Beam ‘Tracking’ data. The inter-slice distance was found to be slightly 
larger in the deeper portion than in the shallower portion, indicating that the transducer was rotated 
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by small angles between measurements. In the measurements, the slices were sampled with an 
interval no greater than 2 mm, and the rotation angle increments were less than 2 degrees in order 
to ensure that the elevational motion could be accurately tracked. Once the elevational motion of 
these blocks was calculated, the acquired image slices were interpolated on to a regular 3D grid in 
Matlab enabling 3D volumes to be rendered 
 
Figure 5 illustrates the lesion detection process. The elasticity reconstruction algorithm was tested 
on the phantom data. The elasticity reconstruction process for the detection of prostate cancer is 
complicated than the elasticity reconstruction process of the breast cancers. Unlike the boundary 
conditions for breast cancer detection, the boundary conditions for prostate cancer detection are 
non-trivial. The effect of which is obvious in the reconstructed displacement and the strain images. 
These non-uniform boundary conditions result in non-uniform and non-symmetric internal 
displacements, which can be seen in the axial displacement image. This results in strain 
concentration artifacts along the top most boundary of the strain image. The non-uniform boundary 
conditions also cause a non-linear decay in strain with increasing depths. The isolated saturation of 
strain in the lower quarter of the strain image is due to the out-of-plane motion, which cannot be 
tracked with linear array transducer. Two-dimensional arrays may probably solve these problems, 
which in turn may result in substantial improvement in the quality of strain images. It is also 
important to note that no post-processing was done on the strain images. In spite of the unique 
challenges associated with the elasticity reconstruction process of the prostate
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Fig. 5.  The lesion detection process. The lesion is barely identifiable in the original B-mode image 
(A). A displacement image is illustrated in (B). The lesion is clearly identifiable in the strain image 
(C). 

 
The 3D volume of the detected lesion was calculated after segmenting the 2D contour in each 
slice and estimating the inter-slice distance. A multiple slice view and a 3D surface view of the 
identified lesion were rendered based on the 3D dataset as shown in Fig. 6. The volume 
measured in the elastography and 3D reconstruction is approximately 339±11 mm3 less than 15 % 
volumetric error from the volume of 300 ±30 mm3 measured using Archimedes principle. 
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Fig. 6. 3D reconstruction of the lesion. A:  The multiple 2D image slices acquired were rendered 
in three dimensions. The lesion was shown darker than surrounding tissue. B: The multiple slices 
of elasticity images with the detected lesion shown in black. C:  The prostate lesion detected 
from the ultrasound images. The lesion was segmented from the surrounding tissue and its 3D 
surface was rendered.  
 
 

The results shown above indicate that the finer resolution of the new higher frequency transducer 
yield superior imaging and 3D reconstruction results. The new transducer operates at up to 14 
MHz. The transducer previously used (as reported last year) used 8 MHz imaging and a similar 
aperture dimension. Taken together, our in vitro results make us well place to commence initial 
patient studies once our Army and Institutional Review Board permission is obtained. The 
paperwork associated with these studies is being completed at the time of writing. 

 
 
Image Processing and Quantification 
We have progressed to a accurate 3D surface rendering from 2D slices by implementing a 3D 
gradient vector flow (GVF) snake algorithm [11].  The 2D and 3D GVF snake algorithm relies on the 
edges to be well delineated and contrast between the various regions to be well defined in each 2D 
ultrasound slice to produce a surface that resembles the actual scanned object.  In ultrasound, 
images are affected by a granular pattern commonly known as speckle.  Before an accurate 3D 
surface rendering can be attained a preprocessing despeckling step is needed to reduce the 
variances in pixel values within homogeneous regions while contrast between distinct regions are 
concurrently enhanced.  We have evaluated a wide variety of well known methods such as the Nagao 
and Matsuyama filter [19], the Lee filter[20], the Frost et al. filter [21], the Kuan et al. filter [22], the 
adaptive weighted median filter proposed by Loupas et al.[23], the Wiener filter [24], the SRAD 
proposed by Yu and Acton [25], and a novel stochastically driven method design specifically for 3D 
surface rendering from 2D slices of the prostate and other organs.  The method we develop 
specifically for the task of this grant is a stochastically driven compression filter called the squeeze 
box filter (SBF).  Our quantitative evaluation using a Field II [12] simulated B mode ultrasound image 
with contrast enhancement performance determined by a modified Fisher discriminant has determined 
that the newly developed SBF method outperformed the other methods and is exceptional in providing 
the needed intra-region reduction in variance and inter-region contrast enhancement with 
computational efficiency.  In Figs. 7 and 8, we show the results of SBF and SRAD applied to a Field II 
simulated image.  It is visually evident that the bright and dark disks in the SBF result is more 
pronounced than in the SRAD image.  In Figs. 9 and 10, we show the SRAD and SBF results, 
respectively, using an ultrasound image of a phantom.  Again, it is evident that the results of the 
simulation are up held with the results of the actual ultrasound phantom image in that edges are well 
preserved and contrast is better enhanced with the SBF than with SRAD.  In Figs. 13, 14, and 15, we 
show the 3D surface, the side view, and the bottom view, respectively, of the rendering we attained 
from a sequence of scans we acquired of an egg phantom.  The sequence consists of acquiring a 2D 
 12



slice every millimeter along the long axis of an egg phantom.  We processed each slice with the SBF 
despeckling method.  The original unprocessed middle slice is show in Fig. 11.  The SBF processed 
middle slice is shown in Fig. 12.  The 3D rendering was attain by SBF processing each slice then 
applying a 3D GVF snake to attain the final results shown in Fig. 13, 14, and 15.  It is very evident that 
our method captured the essential size and shape of the egg phantom.  The volume estimate we 
attained for the object enclosed by the surface was only 10% off of the actual volume of the phantom. 
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Figure 7.  The result of SRAD on a Field II simulated image. 
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Figure 8.  The result of SBF on a Field II simulated image. 

 
 

 
Figure 9.  The result of SRAD on an actual ultrasound image of a phantom. 
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Figure 10.  The result of SBF on an actual ultrasound image of a phantom. 

 

 
Figure 11.  Unprocessed middle slice of the egg phantom. 
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Figure 12.  SBF processed middle slice of the egg phantom. 
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Figure 13.  3D surface found by the 3D GVF with slices preprocessed by SBF. 
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Figure 14.  Side view of the surface rendered by the 3D GVF snake  

with slices preprocessed by SBF. 
 

 
Figure 15.  Bottom view of the surface of the egg phantom  

rendered by the 3D GVF snake with slices preprocessed by SBF. 
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A conference paper of our novel despeckling method has been peer reviewed and accepted for 
presentation and publication at the 2006 IEEE International Symposium for Biomedical Imaging: 
From Nana to Macro to be held at Crystal Gateway Marriott (Arlington, VA USA) on April 6-9, 2006.  
Another conference paper that focuses on improvements of the SBF by using a dynamically varying 
window is under peer review for presentation and publication at the IEEE International Conference 
on Image Processing 2006 to be held at Atlanta Marriott Marquis (Atlanta, GA USA) with notification 
of acceptance due April 17, 2006.  A journal paper on the motivation and mathematical foundations of 
the 1D SBF has been submitted (September 2005) to IEEE Transactions on Signal Processing and 
is current under going the stringent peer review process.  A journal paper on the previously mentioned 
evaluation, 2D SBF, and 3D surface rendering is currently being internally reviewed and we expect a 
submission to an academically reputable journal in the near future (February 2006).  

 
The future direction of our research in this regards will be to increase the efficiency of our algorithm, 
improve the 3D GVF snake to incorporate a priori know information such as the approximate size and 
shape of the prostate, and compare our methods with well established ground truth (we may have to 
establish this ground truth ourselves).   

 
KEY RESEARCH ACCOMPLISHMENTS 
• We have largely completed Aims 1 and 2. Specifically, we have designed and had fabricated a very 
high resolution transrectal ultrasound transducer array for high resolution prostate imaging. 
• We have integrated the new transducer with an ultrasound scanner and an automated injection 
stage to realize an accurate elastographic imaging device. 
• We have tested the 3D and elastographic imaging capability of the transducer / scanner. 
• We have made significant progress in both speckle reduction and in prostate ultrasound feature 
segmentation for improving and automating the prostate cancer diagnostic process. 
 
REPORTABLE OUTCOMES 
 
Y. Li, A. Patil and J. A. Hossack, “High resolution three-dimensional prostate ultrasound imaging”. 
Presented at SPIE Medical Imaging, San Diego, CA, 2006 
Y. Li, A. Patil and J. A. Hossack, “Combined elasticity and 3D imaging of the prostate” Proceedings 
of 2005 IEEE Ultrasonics Symposium, pp.1435-1438, 2005 
P. C. Tay, S. T. Acton and J. A. Hossack, “A Stochastic Approach to Ultrasound 
Despeckling”, Accepted for presentation at 2006 IEEE International Symposium for 
Biomedical Imaging: From Nana to Macro Arlington, VA, 2006  
P. C. Tay, S. T. Acton and J. A. Hossack, “Ultrasound Despeckling Using An Adaptive 
Window Stochastic Approach”, Submitted for presentation at IEEE International Conference 
on Image Processing 2006 
(We have journal papers planned and early preparation in the areas of elastographic imaging 
and in image speckle reduction.) 

 
CONCLUSIONS 

 
Our prostate imaging approach combines using an I-Beam transducer with 3D capability, 
elasticity imaging and test on a prototype using a prostate tissue-mimicking phantom. The 
prostate strain imaging performed here using a slightly inflated sheath over the transrectal 
transducer significantly enhanced tumor visibility (a hard inclusion in the phantom). (The lesion 
was nearly invisible in the regular B-mode image.) The I-Beam transducer enabled 
reconstruction of discrete 2D image acquisitions into regular 3D grid space, and thus the 
tumor was rendered in 3D. The volume calculated for this tumor had an error of approximately 
11% compared to the actual (independently determined) volume. Additionally, we have made 
significant progress in the area of image pre-processing (i.e. speckle reduction) and in image 
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quantification (i.e. feature segmentation). These image processing contributions significantly 
enhance the practical utility of our technique since they hold the promise of accelerating the 
prostate cancer diagnostic task and reducing intra and inter operator variability. Reducing 
variability has significance since serial analysis of cancer growth or remission is dependent on 
accurate and repeatable measures of prostate volume. Since we are able to measure volumes 
directly, rather than extrapolating volume from a length dimension or cross-sectional area, our 
image contributions are well-matched and complement our contributions in 3D and 
elastographic imaging.
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ABSTRACT 
 
This work reports on the application of ultrasound elastography to prostate cancer detection using a high resolution 
three-dimensional (3D) ultrasound imaging system. The imaging was performed at a relatively high frequency (14 
MHz), yielding very fine resolution that is optimal for prostate ultrasound imaging. The fine resolution achieved aids 
in locating smaller lesions than are normally detectable. Elasticity was measured with a quantitative and automatically 
controlled “Synthetic Digital Rectal Examination (SDRE)” wherein a smoothly increasing force was applied by 
injecting water, controlled by an electronic syringe pump, into a latex cover over the transrectal transducer. The lesion 
identified as stiffened tissue was visually enhanced by colorizing and superimposing it over the conventional B-mode 
image. Experimental results using a tissue-mimicking phantom demonstrated that the reconstruction accuracy of the I-
Beam transducer resulted in less than 15% volumetric error. Thus, this high resolution 3D prostate elastography is 
possible and may provide reliable and accurate determination of the size and the location of cancers, which may result 
in improved specificity and sensitivity of cancer detection. 
  
Keywords: prostate cancer, elastography, 3D ultrasound imaging 
 
 

1. INTRODUCTION 
 
Prostate cancer is the second most prevalent malignant cancer in North American men. In 2004, approximately 230,110 
new cases of prostate cancer occurred in the US.  According to the American Cancer Society statistics, 29,900 prostate 
cancer related deaths were anticipated in 2004 [2]. Systematic multi-core biopsy of the prostate, consisting of the 
acquisition of ten or more biopsy cores distributed throughout the prostate, is the best current test for detecting prostate 
tumors, but still exhibits a sensitivity significantly less than ideal [3]. Most commonly used approaches for prostate 
cancer include the digital rectal examination (DRE), and the prostate specific antigen (PSA) blood test. However, the 
usefulness of DRE is fundamentally limited by its subjective nature, and the PSA presents a significant “gray” area (PSA 
concentration is between 4 – 10 ng/ml) due to its low sensitivity and specificity [4]. Recent examples of progress in the 
field of prostate cancer detection include, “mechanical imaging” of the prostate [5] and contrast-enhanced ultrasound [6, 
7], but each of these have shortcomings that limit their application in clinical use. Mechanical imaging has shown 
noticeable improvement in accuracy and sensitivity for in vitro cases, while its use of strain gauges and magnetic 
positioner device may become cumbersome, or even unfeasible, for in vivo cases. The cost of contrast agents for prostate 
cancer diagnosis accounts for almost half of the cost of a conventional ultrasound examination, and therefore represents 
a considerable financial impediment to the widespread acceptance of contrast in routine prostate cancer ultrasound-based 
diagnosis.  In the recent years, elasticity imaging has garnered attention as a technique that reveals the tissue hardness 
and thus provides a means that complements anatomic B-Mode imaging with a map of localized regions of abnormal 
stiffness. Significantly, cancers are frequently associated with local changes in the tissue mechanical properties, or tissue 
hardness [8]. Techniques like sonoelasticity [9] and transient elastography involve application of low frequency shear 
waves to a tissue. Difference in tissue elasticity causes change in the velocity of the shear waves through the tissue. This 
information can be used to reconstruct tissue elasticity modulus. Another ultrasound based elasticity imaging is 
“elastography” [10]. Elastography has been extensively studied for cancer detection, and has produced promising results 
both in vitro and in vivo [11] [12-15]. Elastography involves application of quasi static compression to the tissue; the 
resultant tissue deformation is obtained by tracking the pre- and the post-compression echo RF data. The tissue 
deformation, or strain, is an inverse function of tissue elasticity and reveals the mechanical properties of the tissue. This 
information can be used to differentiate cancers from non-cancers at a relatively early stage as the spatial resolution of 



the technique is comparable with that of B-mode ultrasound [16, 17]. 
 
One of the challenges in elastography is to classify a detected cancer as malignant or benign, this may potentially help in 
precluding inessential biopsies. Garra et al.[13] proposed a cancer classification approach based on the size of the cancer 
as estimated from the elastographic images. It is well known that the benign cancers manifest different shapes from 
those of the malignant cancers. Hence, shape and size estimation of the cancers based on 3D volume (tomography) 
imaging holds a key to increasing the sensitivity and the specificity of elastography (strain imaging). No 3D prostate 
elastography studies have been reported to date. We previously performed 3D reconstruction of the in-vitro prostate 
inclusion using I-beam transducer operated at 8 MHz [18]. This paper continues the in vitro work on 3D prostate 
elastography using an I-Beam transducer at a high frequency up to 14 MHz, providing higher image resolution and thus 
more accurate measurement of tumor size and location, especially for the low-volume tumors. 
 

 
2. METHODS 

 
2.1 Prostate Phantom 
 
A purpose-built prostate phantom was designed using the method described in Negron et al. [19]. The phantom (Fig. 1) 
comprises of four components (labeled 1 to 4). A pea-sized (approximately 0.3 ml) lesion mimicking inclusion 
(referred to as “lesion” hereafter), an egg-shaped tissue mimicking prostate (referred to as “tissue” hereafter) a 
cylindrical cavity (20 mm in diameter) on top of the egg-shaped surrounding to mimic the anal opening, where the 
transrectal transducer is placed during screening; and an exterior gel component that encases all the other three 
components. The lesion is made of 17% (by weight) acrylamide gel; the tissue and exterior component are made of 5% 
acrylamide gel. Thus, the lesion is perceptibly stiffer (10 times) than both the egg shaped tissue region and the exterior 
gel component. The lesion and tissue are made echogenic by mixing Sephadex (Amersham Pharmacia Biotech, 
Piscataway, NJ), which generates speckle in ultrasound imaging. A similar concentration (by volume) of Sephadex 
was added to both the lesion and the tissue, resulting in similar ultrasound image intensity in these two structures (The 
lesion was made slightly brighter than the tissue in order to assist navigation during scanning.) A B-mode ultrasound 
image of the prostate is shown in Fig. 1. The lesion in the image is almost isoechoic. 
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Fig. 1.  Left:  Schematic of the transrectal design of prostate phantom. Right: An ultrasound image of the phantom.  
 
 

2.2 Imaging 
 
A Siemens Sequoia 512 scanner (Siemens Medical Solutions, Mountain View, CA) and a linear phased-array transrectal 
transducer operating at 14 MHz were used in this work. Figures  2 and 3 show a photograph of the new, dedicated, high 
resolution, and 3D capable “I-Beam” [20] transducer that was specifically designed for and used in this work.  The I-
Beam is a modified 1D linear array transducer, which allows for simultaneous fast acquisition and tracking of the 2D 
planar images as the transducer sweeps in the elevational direction. This transducer comprises 192, 8-14 MHz elements 



on a 0.2 mm pitch for imaging and two pairs of 32 elements on a 0.2 mm pitch, for tracking in 3D space. The I-Beam 
approach has been previously demonstrated to produce two standard deviation accuracy in the reconstructed (i.e. 
elevational) direction of 4.6% [20]. The high frequency and long aperture (39.2 mm) of this transducer enables possibly 
the highest prostate oriented ultrasound imaging resolution yet achieved. We anticipate that this high resolution 
transducer is capable of more accurately measuring the size and location of the small lesions and we plan to test it in vivo 
in the near future subject to the requisite institutional human subjects protection. In addition, the high image resolution 
also offers a potential for capturing lesion volumes that go undetected in low resolution imaging systems. The I-Beam 
transducer is also uniquely matched to this particular application for the following reasons: a) the trans-rectal probe with 
the tracking mechanism near the transducer prevents any numerical ill-conditioning. b) The I-Beam transducer estimates 
the relative tissue motion rather than absolute tissue motion, which facilitates efficient and accurate measurements even 
if there is patient motion of the type that can defeat a 3D system that uses a fixed origin for 3D positioning (eg. 
Magnetic-based, optical-based, or articulated arm-based positioner.) 
 
A quantitative and controllable “Synthetic Digital Rectal Examination” approach based on automatic water inflation was 
used to generate a quasistatic stress and to produce tissue deformation. The syringe volume of 60 ml was chosen to 
provide sufficient water to compress and deform the rectal wall thus providing an optimal tissue strain. The injected 
water induced uniform stress through the depth of the tissue, which minimized the artifacts due to non-uniformities in 
the applied stress. Other groups have also adopted similar balloon inflation method, however, those were  operated 
manually [14][15]. Briefly, water was injected with a syringe and ducted via a small tube to the active surface of the 
transducer that was covered by a latex condom (Instead of securing a tube from outside, an injection port was configured 
into the transducer.) A programmable syringe pump (PHD 2000, Harvard Apparatus, Holliston MA) was used to 
motorize the syringe thus minimizing jitter due to undesired manual motion.  
 

 
Fig. 2.  The transrectal transducer is covered with a latex condom. Water was inflated by the syringe during imaging 

 

 
Fig. 3. I-Beam transducer – possessing a main imaging array in the center and a tracking array in each end 

Tracking arrays 



  
Six elevational slices each comprising of 100 IQ data frames were acquired during the in-vitro experiment, such that the 
incremental strain between the consecutive frames was 0.04 %. Total applied strain between the first and the last frame was 
approximately 4 %. An example B-mode image obtained by the transrectal I-Beam transducer is shown in Fig. 4. 

 

 

lesion-mimicking 
inclusion 

T IT 
Fig. 4. A B-mode image acquired with the I-Beam transrectal transducer from the prostate-mimicking phantom, 
showing the layout of image planes formed by ‘Tracking’ arrays and ‘Imaging’ array. ‘T’ – tracking array, ‘I’ – 
main imaging array. Delineated is a lesion-mimicking inclusion. 

 
 
2.3 Elasticity Calculation and 3D Reconstruction 
 
An elasticity map was calculated using the acquired data. The data were filtered using a low pass filter to eliminate jitter 
and electronic noise. Six pairs of frames with differential strain of 2% were tracked using a time-domain cross-
correlation technique on complex IQ data. Sub sample precision was acquired in the delay estimates by using a quadratic 
fit to the cross-correlation function.  A search window of approximately 5 wavelengths was used for time-delay 
estimation. Lateral motion was tracked using the technique described by Lubinski et al. [21]. Displacement estimated 
from these six different renditions were averaged to eliminate uncorrelated random noise. Strain estimates were obtained 
by taking the local gradient of the displacement image (in axial direction). The above process was repeated by sweeping 
the transducer in the elevational direction and six elevational slices were obtained. In the elevation direction, the inter-
slice distance was estimated with a block matching approach based upon the minimum sum of absolute differences 
(MSAD) algorithm of the I-Beam ‘Tracking’ data. The inter-slice distance was found to be slightly larger in the deeper 
portion than in the shallower portion, indicating that the transducer was rotated by small angles between measurements. 
In the measurements, the slices were sampled with an interval no greater than 2 mm, and the rotation angle increments 
were less than 2 degrees in order to ensure that the elevational motion could be accurately tracked. Once the elevational 
motion of these blocks was calculated, the acquired image slices were interpolated on to a regular 3D grid in Matlab 
enabling 3D volumes to be rendered.  

 
 

3. RESULTS 
 

Figure 5 illustrates the lesion detection process. The lesion was detected based on the amplitude of the strain image. A 
threshold technique, after a 5x5 low pass Gaussian filtering to decrease noise, was applied on the strain image using a 
threshold value of 0.8%. Low strain regions (i.e. resulting from high stiffness) were rendered using a translucent green 
mask, superimposed onto the B-mode image so as to maintain the higher spatial resolution of the original B-Mode data 
while simultaneously highlighting elastically anomalous tissue.  
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Fig. 5.  The lesion detection process. The lesion is barely identifiable in the original B-mode image (A). A displacement image is 
illustrated in (B). The lesion is clearly identifiable in the strain image (C). Figure (D) is a hybrid B-mode strain image in which the 
B-Mode image is overlaid with a binary translucent mask outlining a region of enhanced stiffness – as determined by low strain. 

 
The 3D volume of the detected lesion was calculated after segmenting the 2D contour in each slice and estimating the 
inter-slice distance. A multiple slice view and a 3D surface view of the identified lesion were rendered based on the 
3D dataset as shown in Fig. 6. The volume measured in the elastography and 3D reconstruction is approximately 
339±11 mm3 less than 15% volumetric error from the volume of 300 ±30 mm3 measured using Archimedes principle.  
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Fig. 6. 3D reconstruction of the lesion. A:  The multiple 2D image slices acquired were rendered in three dimensions. The lesion 
was shown darker than surrounding tissue. B: The multiple slices of elasticity images with the detected lesion shown in black. C:  
The prostate lesion detected from the ultrasound images. The lesion was segmented from the surrounding tissue and its 3D surface 
was rendered.  

 
 

4. DISCUSSION 
 

The approach of water inflation driven by a quantitative and automatic syringe pump proposed in this paper offers the 
benefits of uniform stress and reduces the non-uniform stress artifacts and out-of-plane problem due to manual motion. 
In addition, it also provides an opportunity to improve elastographic signal-to-noise ratio and contrast-to-noise ration 
by averaging multiple strain estimates from an image sequence, without any loss of axial resolution [17].  Additionally, 
this quantitative process possesses a high degree of repeatability, which helps to decrease inter-observer variation and 
is required for longitudinal studies in the setting of cancerous tissue progressing or recessing.  
 

 
5. CONCLUSIONS 

 
We proposed a prostate cancer detection approach combining elasticity and 3D imaging, using an ultrasound system 
with the exceptionally high precision complex data, and an I-Beam transducer with 3D capability. The approach was 
tested on a prototype using a prostate tissue-mimicking phantom. The prostate strain imaging performed here using a 
slightly inflated sheath over the transrectal transducer significantly enhanced tumor visibility (a hard inclusion in the 
phantom, the lesion was nearly invisible in the regular B-mode image.) The I-Beam transducer enabled reconstruction 
of discrete 2D image acquisitions (including sets of 2D elasticity acquisitions) in to 3D grid space, and thus allowed 
the simulated tumor to be rendered in 3D despite the lack of contrast in the original B-Mode images.  
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Abstract— A 3D volumetric elasticity reconstruction method is 
proposed for prostate elastography. The method uses 
crosscorrelation based I/Q data tracking technique in 2D with I-
Beam transducer to reconstruct 3D volumetric elastograms. The 
elevational motion is tracked using block matching based on 
minimum of the sum-of-absolute differences between the 
successive elevational frames. 3D elasticity reconstruction 
estimates the 3D shape and size of cancers, which may be an 
important step towards their classification as a malignant or a 
benign. 

Keywords-elastography, elasticity, prostate, 3D reconstruction, I-
Beam. 

I.  INTRODUCTION 
Adenocarcinoma of prostate is the most prevalent 

malignant cancer and the second cause of cancer specific 
deaths in men. Each year there are approximated 220,000 new 
cases and 28,900 deaths [1]. Current best approaches for 
detecting a prostate cancer include the digital rectal 
examination (DRE), and the prostate specific antigen (PSA) 
blood test. PSA provides the clinician with an indication of the 
presence of a cancer and hints on its overall development. 
However, both PSA and DRE exhibit low levels of specificity 
and sensitivity with latter being a subjective approach. 
Additionally, prostate cancer is known to possess echogenicity 
that is similar to that of the surrounding tissue and hence often 
passes unnoticed in a trans-rectal ultrasound scan [4]. However, 
cancers are known to be stiffer than the surrounding tissue [11] 
and hence can be detected by imaging their elastic properties as 
in ultrasound elastography [15]. Ultrasound elastography 
involves application of an external compression or stress 
followed by tracking of the pre- and post-compression radio 
frequency (RF)/ In-phase/Quadrature (I/Q) echo data to 
produce maps of internal tissue displacement, spatial derivative 
of which produces a map of local tissue strains.  The 
advantages of this quantitative technique include a higher 
sensitivity, repeatability for serial analysis, and a spatial 
resolution, which is almost in par with the conventional 
ultrasound B-mode images [3-6]. Previous work on 2D prostate 
elastography was also reported by Souchon et al. [15] and 
Alam et al. [2]. In our work we describe an in-vitro 3D 
volumetric prostate cancer detection technique based on 
ultrasound elastography.  The 3D portion of this work was 
enabled using an ‘I-Beam’ transducer [7]. Our preferred strain 
display approach is to colorize the underlying B-Mode image 
data according to measured strain consequently maintaining a 
higher spatial resolution of the original B-Mode data. 

II. METHODS 

A. Prostate Phantom 
The experiments were performed on a laboratory-built 
acrylamide based tissue mimicking phantom, prepared with a 
protocol based on the method by Negron [8]. The phantom 
comprises four components as shown in figure 1. A pea-sized 
inclusion is made of 17% (by weight) acryl amide gel to 
simulate a hard lesion. An egg-shaped surrounding is made of 
5% acrylamide gel to mimic the soft prostate tissue. A round 
cavity (diameter 20 mm) on top of the egg-shaped surrounding 
holds the transrectal transducer and an outer body, also made of 
5% acrylamide gel, encloses all the other three structures. 
Sephadex was added to provide speckle to the surrounding 
tissue and the inclusion, but not to the outside body. In the 
figure 1, on the right, the cavity is obscured in the image 
because the soft acrylamide-based outer body, which is not 
echogenic.   
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Figure 1: The prostate phantom, 1-cavity to put probe, 2-
pea sized inclusion, 17% acrylamidel, 3-prostate tissue, 5% 
acryl amide, 4-outer body, 5% acryl amide.  

 
B. Imaging 

The A latex condom over the transrectal transducer was 
sealed in a conventional manner on the outside surface using 
elastic bands. The condom was controllably inflated with water 
using a syringe. The syringe volume of 60mL was chosen to 
provide sufficient displacement of the rectal wall for a 
measurable tissue strain signal while intrinsically avoiding the 
risk of over inflation of the condom. The pressure and 
displacement are both well within safe limits for in vivo use. 
During the syringe inflation, a programmable syringe pump 
(PHD 2000, Harvard Apparatus, Holliston MA) was attached 



to the syringe to control the amount and rate of water injection. 
This permitted a continuous, and uniform inflation process that 
enabled the image data set to be collected as one image 
sequence capture process. A Siemens Sequoia 512 scanner 
(Siemens Medical Solutions, Mountain View, CA) was used in 
this study. Multiple demodulated (In-phase/Quadrature, I/Q) 
radio frequency beam-formed lines of acoustic data were 
acquired from the ultrasound scanner using a research interface 
employing an IQ data capture board. The data were then 
analyzed offline on a PC.  

 
Figure 2: Schematic setup for prostate elastography. 

The I-Beam transducer allows for simultaneous acquisition 
and tracking of the 2D planar images as the transducer sweeps 
across the phantom; it is compatible with our ultrasound 
biplane trans-rectal probes. The apparatus allows high accuracy 
in the dimensional measurements with standard deviation of 
around 4.6% [7]. The I-Beam transducer is also uniquely 
matched to this particular application for the following reasons: 
a) the trans-rectal probe with the tracking mechanism near the 
transducer prevents any numerical ill-conditioning. b) The I-
Beam transducer estimates the relative tissue motion rather 
than absolute tissue motion, for more efficient and accurate 
measurements [12]. 

 Injection of water in the latex condom results in an 
application of a controlled stress. This external stress deforms 
the phantom. The resulting internal displacements are estimated 
by tracking the pre- and the post-compression I/Q echo data 
using time-domain crosscorrelation. The shift in the peak of the 
crosscorrelation function corresponds to the local tissue 
displacements. The reconstructed tissue displacement image is 
differentiated to estimate the local strain. Elevational motion is 
tracked using an I-Beam transducer and block matching using 
minimum of the sum-of-absolute difference technique. For 
accurate elevational tracking, the 2D frames were sampled 
every 2 mm and with less than 3 degrees of angular rotation. 
The obtained 2D slices were interpolated thus enabling 3D 
volume rendering using Matlab (Natick, MA). 

III. RESULTS 
 Figures 3 and 4 illustrate the lesion detection process. The 
displacement and strain maps were calculated from the I/Q data 
as discussed above. The reconstructed elastograms were 
filtered using a 3 X 3 Gaussian filter and time averaged using 
five independent renditions. Low strain regions (i.e. resulting 
from high stiffness) were rendered using a translucent green 
mask, superimposed onto the B-mode image so as to maintain 

the higher spatial resolution of the original B-Mode data while 
simultaneously highlighting elastically anomalous tissue. The 
volumes calculated from the three independent ultrasound  
 

        
 

Figure 3: Observed B-mode image and the internal tissue 
displacement. 

measurements of this inclusion were 258, 267 and 274 μl 
corresponding to a mean value of 266 μl with a standard 
deviation of 8 μl. The volume of the actual inclusion was 
measured to be approximately 300 μl using Archimedes’s 
principle in a graduated cylinder. The estimated standard 
deviation of the reconstructed inclusion volume was ±30 μl 
(10%). 

 
Figure 4: Reconstructed strain image with the strain 
superimposed on the B-mode image. 

 
Nevertheless, this early result is encouraging when taking 
account of the fact that errors in all three orthogonal 
directions can compound to degrade the final volumetric 
accuracy. Furthermore, in previous studies using a transducer 
with similar acoustic characteristics to the one used here, we 
obtained a standard deviation of 4.6% in the reconstructed 
(transducer elevation) dimension [7]. Figures 5 and 6 
illustrate the reconstructed volume and the original volume of 
the inclusion, respectively. 
 
 
 
 
 



IV. DISCUSSION  
In this work we have used the base band or I/Q data, which 

decorrelates much slower than the RF data thereby enabling the 
imaging of higher induced strains though at a relatively lower 
resolution [16]. Also, 3D volume rendering may help in better 
estimating the size and the shape of the detected tumor, which 
may be of great value in determining whether the tumor is 
malignant or benign [10]. In addition, we have acquired a 
transducer with higher center frequency, which will improve  

 
Figure 5: The re-constructed 3D volume of the pea-shaped 
inclusion. 

 

the spatial resolution of the elastographic strain images in the 
future studies. Figure 7 illustrates the comparison of two B-
mode images obtained from the current (8 MHz , spatial 
resolution of 0.18 mm) and the new (14 MHz, spatial 
resolution of 0.1 mm) phased-array transducer.. 

 
Figure 6: The original dimensions of the pea-shaped 
inclusion. 

It is important to note that the speckle pattern in the 14 MHz 
transducer is finer than that in the 8 MHz. Also, prostate 
elastography requires imaging of the shallower part of the 
prostates and hence depth dependent attenuation is minimized 
with a gain in spatial resolution. 

 
Figure 7: The B-mode images obtained from the 8 MHz 
(left) and 14 MHz (right) transducer. 

 

V. CONCLUSIONS 
The prostate strain imaging performed here using a slightly 
inflated sheath over the transrectal transducer significantly 
enhanced tumor visibility (a hard inclusion in the phantom). 
(The inclusion was nearly invisible in the regular B-mode 
image.) The I-Beam transducer enabled reconstruction of 
discrete 2D image acquisitions onto regular 3D grid space, and 
thus the tumor was rendered in 3D. The volume calculated for 
this tumor had standard deviation of approximately 11% 
compared to the actual (independently determined) volume. 
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Abstract

Surface rendering of three dimensional (3-D) objects from two dimensional (2-D) images require features such

as edges to be accurately delineated and contrast between differing regions to be well pronounce. In this regard,

images produced by an ultrasound system are adversely hampered by a stochastic process known as speckle. When

a set of 2-D ultrasound slices are used to autonomously render 3-D surfaces, the ambiguities caused by the speckle

phenomena prohibit an accurate depiction of an object’s surface. In this paper, we objectively evaluate a variety

of known despeckling filters to be used as a preprocessing step to remove or reduce speckle from each slice prior

to applying a 3-D gradient vector flow active contour to determine the surface of an object. We provide a novel

efficient despeckling method that is well suited for this pre-rendering process. This novel despeckling technique

visually displays excellect contrast enhancement in both actual and simulated ultrasound images. A quantitative

evaluation on simulated ultrasound images and using a relative contrast performance enhancement metric verifies

our qualitative evaluation. More importantly, an autonomous 3-D rendering using our novel despeckling method

yields an excellent approximation to the object’s actual surface. Excellence in the sense the size, shape, and volume

estimate of the object enclosed by the surface rendering accurately reflect the size, shape, and volume of the actual

object,resp.
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Ultrasound Despeckling for 3-D Rendering

I. I NTRODUCTION

An accurate 3-D rendering of organs such as the heart, kidney, prostate, liver,etc., would in many

ways be a beneficial aid to health practioners in diagnosing ailments or assessing the health of that organ.

These 3-D renderings are possible by layering 2-D images or slices attained from an incremental scan to

construct a 3-D matrix. A 3-D surface of the object can be formed from the 3-D matrix, which hold edge

information contained in the 2-D slices. A straightforward method to determine the 3-D surface from the

3-D matrix of 2-D slices is to implement the 3-D version of the gradient vector flow (GVF) active contour

(i.e. snake). The GVF active contour of Xu and Prince found in [1] is robust in determining the surfaces

of objects that are in great generality star convex. The GVF snake derives pixelwise gradient information

from either the binary or grayscale edge map. A diffusion of the edge map gradients form a vector flow

field. From some initial set of snaxels (short for snake elements and are defined as pixels on the current

contour), the GVF iteratively forces the snaxels and the interpolated surface to converge towards strong

(well defined) edge or border locations. A surface interpolation using the final set of snaxels determines

the 3-D surface of the object.

Before we can apply the 3-D GVF snake to the 3-D matrix composed of 2-D ultrasound images, the

speckle in each ultrasound image must be reduced so that a faithful edge map can be determined because

the GVF is dependent on this edge map. Although the ultrasound images are affected by a stochastic

process seen as a granular pattern commonly known as speckle, the use of ultrasound as an imaging

modality is preferred for the following reasons:

• only safe non-ionized sound waves are used in the scanning process;

• the portability of the hardware is advantageous for telemedical purposes or imaging patients where

transporting them is problematic;

• cost is inexpensive when compared to other medical imaging modalities; and



2

• real-time or near real-time functional information such as blood or tissue velocities can easily be

attained by taking advantage of the Doppler effect of the sound waves.

Goodman in [2] offers a physical explanation of laser speckle as due to the roughness with respect to

the wavelength of the laser on the surface being imaged. The cause of laser speckle can be mathematically

models as a sum of a large number of complex phasor,a.k.a.a complex random walk. These complex

phasors can have a constructive or destructive relationship with each other. Thus bright and dark points can

be observed in close proximity of each other. The relationship and relevance of acoustic speckle to laser

speckle is given by Abbott and Thurstone in [3]. More relevant and detailed descriptions of ultrasound

image formation and the statistics of ultrasound speckle can be found in [4], [5]. From the experimentation

performed in [4], the intensity or pre-logarithm compressed enveloped detected amplitudes can be modeled

as the multiplicative model given in equation (1)

J(n,m) = P (n,m) ∗ (I(n, m)η×(n, m)) (1)

whereη×(n, m) is statistically independent ofI(n,m) or as the additive model

J(n, m) = P (n, m) ∗ I(n, m) + η+(n, m) (2)

where η+(n,m) is statistically dependent toI(n, m). In both equations (1) and (2), the point spread

function (PSF) of the ultrasound imaging system is denoted by theP (n, m) and maybe spatially varying.

The smoothing of speckle and preservation of edges are in a general sense opposite processes, which

are difficult to accomplish concurrently. This problem is not only directly relevant to enhancing ultrasound

images, but also relevant to enhancing synthetic aperture radar (SAR), optical laser, and other imaging

methods. A wide variety of methods have been proposed to address speckle removal or reduction,

commonly referred to as despeckling, with success dependent on improvements to a post-despeckling

application or visual interpretation. When addressing speckle as unwanted noise non-linear adaptive

filtering [6]–[12] and anisotropic diffusion [13], [14] methods have been proposed. Although other

more recent types of methods like multiscale thresholding [15], Bayesian multiscale method [16] or
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improvements on existing methods such as those in [17] have been proposed, we restrict our survey to

the Wiener filter [18]; the non-linear adaptive methods of Nagao and Matsuyama [6], the Lee filter [7],

the Frostet al. filter [8], the Kuanet al. filter [10]; and the anisotropic diffusion method SRAD [14].

Later in this paper, a quantitative evaluation on the performance of these filters in improving the contrast

enhancement will be assessed.

The problem of attaining the noise free unblurred imageI from a detected imageJ, modeled as in

equations (1), (2), or others, is generally considered ill posed, that is, the solution may not be unique or

impossible to verify. To state a well posed problem, either the restoration is to be accomplished under some

constraints onI, i.e. regularization [19], [20], or the ideal unblurred noise free imageI is knowna priori.

The experiments and results using simulated ultrasound images given later in this paper will be in the spirit

of the latter. We will evaluate the performance of various sharpening and/or denoising algorithms based

on thea priori knowledge of the desired image. The general goal of an image restoration or segmentation

algorithm should be to decrease the variance in a homogeneous region while distinct regions should be

well defined. A novel metric, which is a generalization of the Fisher discriminant, will be given to quantify

how well various algorithms achieve this general goal. An evaluation of various despeckling algorithms

using simulated ultrasound images will be presented. This evaluation will provide support for the use of a

novel stochastically driven compression filter as a preprocessing step prior to 3-D surface rendering using

a 3-D GVF snake. We substantiate our results by comparing the 3-D surface rendering produced by the

3-D GVF snake using a human optimized SRAD followed by a morphological hole filling operation with

the surface rendering produced by the 3-D GVF snake using our proposed efficient compression method.

II. VARIOUS DESPECKLINGFILTERS

A. Wiener Filter

Suppose the detected image is given as the additive model in equation (2) where the PSFP is known

or estimated. Applying the Wiener filter as described in [18] to the detected imageJ results in an ideal
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(or approximately ideal) low pass filtered version of the ideal imageI polluted with the noise component

η+(n, m), provided that the PSFP is an low pass filter. Wiener filtered imagẽJ is determined as

J̃
DFT←→ ̂̃

J = P̃Ĵ = P̃
{
P̂Î + η̂+

}
(3)

whereP
DFT←→ P̂ (i.e. P and P̂ are discrete Fourier transform pairs), likewise forJ, I, η+ and Ĵ, Î, η̂+,

resp.,

P̃ (k, l) =


P̂ ∗(k,l)

|P̂ (k,l)|2+σ2
η+

if P̂ (k, l) 6= 0

1 otherwise,

(4)

andσ2
η+

is the variance of the noise. The fortuitous side of applying the Wiener filter is that edges are in

a generally relative sense enhanced. Unfortunately, the Wiener filter indiscriminately enhance the speckle

present within a homogeneous region.

It should be noted that the Wiener filter is applied in theDFT domain. This requiresa priori knowledge

of the PSF, which for ultrasound images is spatially varying. Even if the spatially varying PSF is known or

could be accurately calibrated, incorporating a spatially varying PSF into the Wiener filtering framework

is problematic and will be topics for our future research papers.

B. Nagao Filter

Nagao and Matsuyama in [6] proposed a recursive edge preserving smoothing algorithm. One iteration

of this algorithm replaces each pixel value with the mean of some segmentwk originating fromJ(n,m)

and the variance ofwk is the minimum variance attained from a set of variances in all eight directions.

Precisely,

Ĵ(n,m) = E(wk), (5)

whereE(·) is the expected value operator,

var(wk) = min {var(wi) | for i = 0, 1, 2, . . . , 7}

and w0, w1, w2, . . . , w7 are equal length segments, which originate fromJ(n,m) and span all eight

directions. This recursion is allowed to continue until convergence in most of the pixel values is established.
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This method they claim and empirically show in [6] enhances the edges of an image in addition to

adaptively smoothing the image.

Though this method is simplistic, it is evolutionary in which this filter adaptively uses local statistics,

variances in the eight different direction, to determine a window to derive a replacement pixel value. In

addition, the iterative nature of this method may offset some of the problems with using a fixed window

length.

C. The Lee Filter

Lee in [7] proposed methods to contrast enhance an image and to restore an image corrupted by noise.

Lee’s noisy image models in [7] are

J(n,m) = I(n, m) + η(n,m) (6)

for the additive noise case and

J(n,m) = I(n, m)η(n,m) (7)

for multiplicative noise. In addition to proposing a method to contrast enhance an image, his paper

proposes an adaptive filter to aggressively smooth, via local averaging, in homogeneous regions while

regions which contain significant image features such as edges are to be left unmolested.

To emphasize the significance of Lee’s contribution in [7], the interrelated contents of his paper,

contrast enhancement, additive and multiplicative noise suppression algorithms are briefly and thoroughly

described. To enable contrast enhancement, at each pixel Lee’s algorithm used a linear rescaling of the

local mean summed with the multiplication of a gain applied to the difference of the pixel value with the

local mean to determine the new pixel value. Formally, letJ(n,m) be the original pixel value of some

imageJ, then the new pixel valuêJ(n,m) is set at

Ĵ(n, m) = g(µ) + k(J(n, m)− µ), (8)

whereµ is the local mean. The functiong(·) is a linear rescaling of the mean that isg(µ) = aµ+ b where

the parametersa, b ∈ R were determined to allow the new pixel value to utilize the full eight bit dynamic
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range. As pointed out in [7], if0 ≤ k < 1, then equation (8) determines a smoothing filter,i.e., a low

pass filter. When the gaink is greater than one, then equation (8) attempts to “sharpen” image features

that is enhance the edges.

If the image is determined or assumed to be polluted with zero mean additive white noise1, then the

gaink is adaptively chosen as a function of the local statistics. To be precise, the new pixel valueĴ(n,m)

is set at

Ĵ(n,m) = µ + k(J(n, m)− µ) (9)

whereµ is the mean in some window. The gaink is determined as

k =
σ2 − σ2

η

σ2
(10)

whereσ2 is the local variance in the same window aboutJ(n, m) that determinedµ andσ2
η is the global

noise variance. Whenσ2 � σ2
η 6= 0, the gain parameter is less than but approximately one. In which case

the filter in equation (9) performs like an identity filter that iŝJ(n,m) ≈ J(n,m). If the local varianceσ2

is greater than but nearly equal to the global noise varianceσ2
η, thenĴ(n, m) ≈ µ and the filter specified

by equation (9) serves as a low pass filter. Since the global noise variance can only be greater than or

equal to zero, the gain parameterk can never exceed one. Thus, in homogeneous regionsk should be set

to zero and equation (9) provides local smoothing. WhenJ(n, m) is determined to be an edge pixel, then

k should be set to one and the pixel is left undeteriorated.

When the image is determined or assumed to be degraded by multiplicative noise as in equation (7),

then Lee in [7] approximates the image as an additive noise model of the form

J̃(n, m) = AI(n, m) + Bη(n, m) + C (11)

whereA, B, C ∈ R are chosen so that mean square error between theJ(n, m) of the multiplicative model

from equation (7) and̃J(n, m) of the additive model in equation (11) is minimized. Since the image

polluted by multiplicative noise is recast as an image with additive noise, the adaptive filter employed in

1Lee in [7] does not specify any distribution on the noise values.
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the additive case, given in equation (9), can be used, though the gain parameterk is redefined. Given an

a priori determination of the mean and variance of the stationary noise,µη and σ2
η resp., the adaptive

gain parameter is determined as

k =
µηQ

µ2
Iσ

2
η + µ2

ηQ
(12)

whereµI is the mean ofI(n, m) determined as

µI =
µ

µη

(13)

within some fixed window andµ is the local mean ofJ(n,m) within the same window. The variableQ

is determined as

Q =
σ2 + µ2

σ2
η + µ2

η

− µ2
I (14)

whereσ2 is the local variance ofJ(n,m) within some window.

Lee’s modification of the adaptive approach of R. Wallis2 is a significant contribution because his method

incorporated local statistics of an image to determine the gain parameters of an adaptive filter to smooth

additive or multiplicative noise. Discouragingly, the Lee filter relies on an unrealistic approximation of the

local mean of the ideal imageµI given in equation (13). This is not favorable, since this approximation

is difficult (if not impossible) to verify its accuracy and can be considered a blind variable.

D. The Frost Filter

Frost, Stiles, Shanmugan, and Holtzman in [8] derived that an image recorded from a synthetic aperture

radar system can be modeled as a PSF applied to an ideal image polluted by multiplicative noise. Their

image model is given in equation (1). Their goal in [8] was to apply an optimum minimum mean squared

error (MMSE) filter to estimate the local regions of a ideal image while avoid degrading edge features. The

motivation of Frostet al.’s method consist of determining a filterf(n′, m′), so that in a local homogeneous

region ofJ(n,m) and in the presence of white noise, the expectation criteria

E[(I(n,m)− Ĩ(n, m))2] (15)

2The reference to R. Wallis’ contributions is cited in [7].
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is minimized. The term̃I(n, m) is a windowed weighted sum aboutI(n,m). Formally,

Ĩ(n, m) =

⌊
N′
2

⌋∑
n′=−bN′

2 c

⌊
M′
2

⌋∑
m′=−bM′

2 c
f(n′, m′)I(n + n′, m + m′) (16)

wherebxc denotes the greatest integer less than or equal tox andN ′×M ′ is the window size. Normally,

N ′ andM ′ are equal and odd. Under the assumption that the noise is white and the transfer function of

the PSF is constant over some finite bandwidth, they derived the filter that minimizes (15) as

f(n′, m′) = Kαe−α|τ(n′,m′)| (17)

where

α =

√
2a

(
µη

ση

)2(
1 +

(µ

σ

)2
)−1

+ a, (18)

K is some normalizing constant,a is an region dependant constant,µη is the mean of the noise,ση is the

standard deviation of the noise,µ is the local mean in some window aboutJ(n, m), andσ is the local

standard deviation ofJ(n,m) within the same window that is used to determine the mean. The window

size used to determine the local mean and local variance ofJ(n,m) does not necessarily have to equal

the weighting window size,N ′ ×M ′. The functionτ : Z× Z −→ R was not explicitly specified in [8].

Rather, a description ofτ(n, m) was simply given as a monotonically decreasing function. This can be

achieved, for example, whenτ(n,m) =
√

n2 + m2 for n =
[
− bN ′c

2
, bN

′c
2

]
and m =

[
− bM ′c

2
, bM

′c
2

]
. The

window dimensionsN ′ andM ′ are usually odd and equal.

E. The Kuan Filter

Kuan, Sawchuk, Strand, and Chavel in [9] develop a nonlinear filter that they claim in a local neighbor-

hood provides a linear minimum mean square error (LLMMSE) estimateÎ(n, m) of the ideal noise free

imageI(n, m) from the sensed or detected imageJ(n,m). In 1987, Kuanet al. published the application

of the LLMMSE estimate to image restoration in [10]. The LLMSE estimate of the ideal noise free image

is given as

Î(n, m) = µ +
ω2 − σ2

η

ω2
(J(n, m)− µ) (19)
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whereµ is the local variance in some window aboutJ(n, m) andω2 is the local variance in some weighted

window aboutJ(n,m). The local weighted varianceω2 is defined as

ω2 =
1

N ′M ′

⌊
N′
2

⌋∑
n′=−bN′

2 c

⌊
M′
2

⌋∑
m′=−bM′

2 c
w(n′, m′)(J(n + n′, m + m′)− µ)2 (20)

where
∑
n′,m′

w(n′, m′) = 1, N ′ andM ′ are typically odd and equal.

F. The Adaptive Weighted Median Filter

Loupas, McDicken, and Allan in [11] develop a filter they named the adaptive weighted median filter

(AWMF). The AWMF was specifically designed to suppress speckle noise inherent to ultrasound images.

It is should be noted that the motivation for the AWMF is motivated by the following ultrasound image

model

J(n, m) = I(n,m) +
√

I(n, m)η(n,m). (21)

It is easily derived from the image model given in equation (21) that the local variance of the observed

imageJ(n,m) in a homogeneous region is proportional to the noise variance, provided that theη(n,m) is

independent ofI(n,m). Precisely, let the ideal image be equal to a constantc in some local neighborhood,

I(n, m) = c, then

σ2 = cσ2
η (22)

whereσ2 andσ2
η are the local variance of the observed image and the variance of the wide sense stationary

noise,resp.With this motivation Loupaset al. defines the AWMF as

Ĵ(n, m) = median

{
J(n + n′, m + m′), J(n + n′, m + m′), . . . , J(n + n′, m + m′)︸ ︷︷ ︸

w(n′,m′)

}
∀n′,m′∈[−bN′

2
c,bN′

2
c]

(23)

wherew(n′, m′) is a nonnegative integer. Loupaset al. in [11] defined theN ′ × N ′, whereN ′ is odd,

window of weight terms as

w(n′, m′) = roundnonneg

{
w(0, 0)− cσ2

√
n′2 + m′2

µ

}
(24)
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whereroundnonneg{·} means round to the nearest non-negative integer,c is some constant,µ is the local

mean, andσ2 is the local variance. The constantc and the window termw(0, 0) determines the AWMF’s

ability to preserve edges.

G. Speckle Reducing Anisotropic Diffusion

Inspired by the time dependant heat diffusion equation, Perona and Malik in [13] published a method to

perform anisotropic diffusion on noisy images. In [13], the diffusion equation of an image with continuous

variables over timeJ(x, y, t) is given as

J(x, y, t) = div{c(x, y, t)∇J(x, y, t)} = c(x, y, t)∇2J(x, y, t) +∇c(x, y, t) · ∇J(x, y, t) (25)

where (x, y, t) ∈ R3, div is the divergence operator,∇ is the gradient operator,∇2 is the Laplacian

operator,v · w represents the dot product of two vectors, andJ(x, y, 0) = J(x, y). When c(x, y, t) is a

constant, then equation (25) defines isotropic diffusion. For anisotropic diffusion, the function known as

the conduction coefficient (a.k.a.coefficient of variation, diffusion coefficient)c(·) is given as

c(x, y, t) = exp

(
−
(
‖∇J(x, y, t)‖

K

)2
)

(26)

or

c(x, y, t) =

(
1 +

(
‖∇J(x, y, t)‖

K

)2
)−1

(27)

whereK is some constant and‖ · ‖ is the norm.

Yu and Acton in [14] proposed a anisotropic diffusion method where the coefficient of variation is

determined as a function of the ratio of the instantaneous variance to the instantaneous mean squared. In

other words, their speckle reducing anisotropic diffusion method, which they acronymically named SRAD,

utilizes the instantaneous coefficient of variation (ICOV) as a variable in their conduction coefficient

function. The ICOV of SRAD determine whether a pixel should be smoothed or left unbludgeoned. The

SRAD algorithm iteratively processes a nonzero valued imageI(x, y) := I(x, y; 0) according to

∂I(x, y; t)

∂t
= div[c(q)∇I(x, y; t)] (28)
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and

∂I(x, y; t)

∂~n

∣∣∣∣
B(Ω)

= 0 (29)

where~n is the outward normal vector toB(Ω), the border ofΩ. Equations (28) and (29) are known as the

SRAD partial differential equations (PDEs). The diffusion coefficientc(·) is defined either as the quotient

c(q(x, y; t)) =
q4
0(t) + q2

0(t)

q4
0(t) + q2(x, y; t)

(30)

or as the exponential function

c(q(x, y; t)) = exp

(
q2
0(t)− q2(x, y; t)

q4
0(t) + q2

0(t)

)
. (31)

In both equations (30) and (31), ifq(x, y; t) ≈ q0(t), thenc(q(x, y; t)) ≈ 1 and smoothing with respect to

equation (28) is enacted. Ifq(x, y; t)� q0(t), then the diffusion coefficient is very small and smoothing

in a local region around(x, y) is averted. When at timet, if (x, y) resides in a homogeneous region, then

smoothing can be promoted by allowingq(x, y; t) ≈ q0(t). When(x, y) lie on an edge or in the vicinity of

an edge, then definingq(x, y; t)� q0(t) would prohibit deterioration of the edge. Yu and Acton defined

q0(t), the coefficient of variation in fully developed speckle, as the ratio of the noise standard deviation

to the noise mean,

q0(t) =
ση(t)

µη(t)
, (32)

and the instantaneous coefficient of variation is defined as

q(x, y; t) =

√√√√√ 1
2

(
|∇I|

I

)2

− 1
16

(∇2I
I

)2(
1 +

(
1
4

) (∇2I
I

))2 . (33)

The standard deviation and the mean of the noise in equation (32) are determined by calculating the mean

and standard deviation within a homogeneous region where noise is prevalent.

The coefficient of variation used in equations (26) and (27) rely solely on the gradient norm. The

inclusion of the Laplacian operator in determining the instantaneous coefficient of variation defined in

equation (33) and the characterization of fully developed speckle by equation (32) provides a more robust

method to determine the diffusion coefficient defined in equation (30) or (31) within different possibly
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disconnected region. Lastly, it should be noted that though we outlined the intuitive ideas of SRAD

using continuous variables(x, y, t) ∈ R3, our implementation of SRAD used in the evaluation given in

section IV of this paper is the discrete form detailed in [14].

III. A S TOCHASTICALLY DRIVEN METHOD

With the exception of the Wiener filter, the despeckling methods described in section II evaluate every

sample in a image and adaptively determines whether to smooth (locally average) or not. The Wiener filter

relies ona priori knowlegde of the PSF and the noise variance to determine a convolution kernel, which

is applied to every pixel in the entire image. The iterative filtering method we presented in this section

only considers samples which are outliers of some probability density function (PDF) and applies local

smoothing to these outliers. The local extrema are considered outliers and are not used in the determination

of the local mean. The choice of the neighborhoodN is extremely important, since the mean of some

PDF is determined by samples inN . A large neighborhood fully contained in a homogeneous region will

produce a local mean that is closer to the mean of the homogeneous region. Yet, a neighborhood that is

too large will extend pass the homogeneous region and yield a local mean, which will erroneously reflect

the mean of the homogeneous region. Each iteration of the method currently being described produces a

sequence with locally reduced variance. The local extrema of the new sequence are consider as outliers

and the process is iterated. The steps of our proposed iterative method are as follow:

1) Each iterationi begins by determining the set of locations of local maxima and local minima. The

locations of these extrema are defined by the set

NE = {(n,m) | Ji−1(n, m) meets condition 1 or 2}

Condition 1:Ji−1(n,m) > Ji−1(n + k,m + l)

Condition 2:Ji−1(n,m) < Ji−1(n + k,m + l)

wherek, l = −1 or 1.
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2) Without using the local extrema values, our algorithm replaces the extremum with the local mean

taken from neighboring samples. For all(n, m) ∈ NE

Ji(n, m) =
1

|N |
∑

(k,l)∈N

Ji−1(k, l) (34)

whereN is some local neighborhood of(n,m), |N | is the cardinality of setN , and(n,m) /∈ N .

3) If convergence is not attained, that is

∑
∀n,m

|Ji−1(n, m)− Ji(n, m)| > ε (35)

for some predefinedε > 0, then another iteration is performed. If convergence is attained, then only

further trivial insignificant improvements can be attained with this filtering method and the process

is stopped.

By removing outliers at each iteration, this method reduces the local variance at each pixel. In effect,

this method produces a convergent sequence of images by squeezing or compressing the stochastically

distributed pixel values to a limiting value. Thus, we call this stochastically driven method the squeeze

box filter (SBF).

IV. EVALUATIONS AND RESULTS

A. Using Simulated Images

To evaluate the despeckling performance of the Wiener filter, the various adaptive non-linear filters,

and the anisostropic diffusion method SRAD against the stochastically driven SBF method, four templates

where created and are denoted asTI , TII , TIII , andTIV . These templates represent the ideal noise free

images and are shown in the top row of Fig. 1. The pixel values of the background class of all templates

are set at one. TemplatesTI andTII consist of two classes: the background class, shaded in black for

TI and white forTII ; and a class consisting of ten disks of various size, shaded in white and with pixel

values five forTI , and forTII this class is shaded as black and the pixel values are set at zero. Templates

TIII andTIV consist of three classes: the background class, which is shaded in gray; a class consisting
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of five disks of various diameter shaded in white with the pixel values set at five forTIII and zero for

TIV , shaded in black; the third class is composed of five disks of various diameters, shaded in black and

with pixel values set at zero forTIII and forTIV this class is shaded in white and with pixel values set

at five.

The Field II simulation [21] of the four templates are shown in the bottom row of Fig. 1 and are denoted

asJI , JII , JIII , andJIV . The simulations are constructed with the transducer at the top of the image. The

focus point for each simulation is set at 70mm axial distance from the transducer and at lateral position

0mm. In each simulation, the spatial varying PSFs are shown along the column at lateral position -15mm

at axial distances 40mm, 50mm, 60mm, 70mm, and 80mm.

To evaluate which method in sections II and III provide the best improvements to an ultrasound image

a meaningful quantifiable measure and a method to attain this measure is needed. This measure should

indicate when different homogeneous regions are properly defined. Additionally, this metric should account

for differences in pixel values from the mean of a class. A class is taken to be a collection of homogeneous

regions. This measure in essence will determine how well an algorithm despeckles the simulated ultrasound

image while keeping the distinct classes well separated.

The method we propose to quantify the improvements made to an ultrasound image is as follow:

1) First, we create the ideal image that is a templateT with various classesC1, C2, C3, . . . , CN .

2) A simulation of an ultrasound imageJ using the templateT is accomplished via the Fields II

software.

3) A despeckling algorithm is applied to the simulated imageJ. The output image is denoted asIalg.

4) The means and variances in each predefined classes ofIalg are computed.

5) The ratio of the average squared differences of the inter-class means to the sum of the intra-class

variances are calculated and this quantity is denoted asQIalg
. Explicitly, the quantity to evaluate the

performance of an despeckling algorithm to preserve distinct classes and promote smoothing within



15

homogeneous regions of each class is given as

QIalg

def
=

∑
k 6=l

(µCk
− µCl

)2

(N − 1)
N∑

k=1

σ2
Rk

(36)

where

µCk

def
=

1

|Ck|
∑

(n,m)∈Ck

Ialg(n,m), (37)

σ2
Ck

def
=

1

|Ck|
∑

(n,m)∈Ck

(Ialg(n,m)− µCk
)2, (38)

and |Ck| denotes the number of pixels in classCk.

6) To avoid sensitivity to resolution, the quantity we will use to measure the improvements to the

imageJ due to algorithmalg is

Q̃Ialg

def
=

QIalg

QJ

. (39)

We refer to this relative performance metric̃QIalg
as the ultrasound despeckling assessment index

(USDSAI).

If the classes are well separated, then the numerator in equation (36) will be large. If the segmentation

or restoration algorithm produces small intra-class variances, then the denominator of equation (36) will

be small, resulting in the USDSAI quantitỹQIalg
to be large. Large value would indicate thatalg produces

the desirable restoration result. If̃QIalg
is greater than one, then the algorithm being tested improved the

ultrasound imageJ. LargerQ̃Ialg
values indicate better performance when comparing various algorithms.

If Q̃Ialg
is less than one, then we consider the algorithm being tested as detrimental to the ultrasound

imageJ. If Q̃Ialg
is equal to one, then it is suspect that any improvements were accomplished.

To elucidate the significance of the USDSAI quantityQ̃Ialg
defined in equation (39), we examine the

three extreme cases. The first case is the simulated imageJ is not constant and the resulting image of

some algorithmIalg is constant. Clearly,QIalg
= 0

0
, which we define as zero. Thus, the quantityQ̃Ialg

is
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equal to zero. We consider algorithms that yield smallQ̃Ialg
values, less than one, as indicative of poor

performance.

In the second case, the simulated imageJ is neither a constant nor a scaled version of the template

image. The resulting image of some algorithm is the template image, that isIalg = T. In this case

QIalg
=

K

0
=∞⇒ Q̃Ialg

=∞ (40)

when the average of the squared differences of the inter-class means represented asK is not equal to zero.

We will consider this quantity as indicative of an ideal improvement to the imageJ and the algorithm

being tested performed ideally.

The third and final case is when the simulated imageJ be composed of classesC1, C2, C3, . . . , CN

and the pixel values of the resulting imageIalg is some constant except for a single point within each

classC1, C2, C3, . . . , CN , without loss of generality, say the pixel values are all zero except at differing

points in each class have valuesK1|R1|, K2|R2|, K3|R3|, . . . , KN |RN |, whereKi ≥ 0. In other words, the

algorithm being tested sets the pixels in each class to the same constant except one pixel differs from the

rest. In this case, the sum of the inter-class mean differences squared is

∑
k>l

(µCk
− µCl

)2 =
∑
k>l

(Kk −Kl)
2 ≤ (N − 1)

N∑
k=1

K2
k . (41)

The inequality of equation (41) is attain from the safe assumption thatKk ≥ 0 for all k. The variance

for each classCk wherek = 1, 2, 3, . . . , N is

σ2
Ck

= (|Ck| − 1)K2
k . (42)

The sum of the intra-class variances is

N∑
k=1

σ2
Ck

=
N∑

k=1

(|Ck| − 1)K2
k . (43)

Let Cmin = min{|Ck| wherek = 1, 2, 3, . . . , N}, so that

N∑
k=1

σ2
Ck
≥ (Cmin − 1)

N∑
k=1

K2
k . (44)
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Using the inequalities from equations (41) and (44), the quantityQIalg
defined in equation (36) is bounded

above by

QIalg
≤

(N − 1)
N∑

k=1

K2
k

(N − 1)(Rmin − 1)
N∑

k=1

K2
k

=
1

Cmin − 1
. (45)

In this present case, the algorithm being evaluated produces an image composed of a scaled Kronecker

delta function in each class. WhenCmin is very large, the original unprocessed image contain large classes

of homogeneous regions and the metricQIalg
returns a small number. Thusly, thẽQIalg

value would be

smaller thanQ̃J.

To present an objective comparison, we perform an exhaustive search varying the parameters of each

algorithm so that the USDSAI valuẽQIII
Ialg

was maximized. We used these optimal parameters of each

algorithm to perform the comparison with the other test images. The result of this exhaustive search for

the Wiener filter PSF that was derived from the simulation is a two dimensional Gaussian function with

horizontal and vertical means of zero and standard deviations of0.1.

The resulting images using the Nagao, Lee, Frost, Kuan, AWMF, SRAD, Wiener, and SBF are shown

in Fig. 2 and 3. The USDSAI values̃QIi
alg

of each filter is given in Table I. The observant readers will

notice that the subjective results shown in Fig. 2 and 3 reflect the quantitative results of Table I. The

average of all USDSAI values̃Qi
Ialg

for all algorithms tested is given in the rightmost column of Table I.

The resulting images produce by the Nagao filter are shown in Figs. 2(a)- 2(d). A close inspection of

these images show that the Nagao filter produces small “patchy” regions in place of the speckle. More

detrimental, it is very evident that the edges of the various circular regions are greatly distorted. The

USDSAI valuesQ̃II
Nagao

and Q̃III
Nagao

given in Table I are less than one, indicating that the Nagao filter

is counter productive in improving the contrast enhancement of these simulated ultrasound images. An

intraclass reduction in the variances of the different classes of the simulated images shown in Fig. 2(c)- 2(d)

produced USDSAI values̃QIIII
Nagao

andQ̃IIV
Nagao

, to be greater than one. Thus, a overall modest quantitative

improvement due to the Nagao filter is indicated by the average USDSAI value slightly greater that one
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and given in the rightmost column of Table I.

The images shown in Fig.s 2(e)- 3(d) are due to the application of the Lee, Frost, Kuan filters,

and AWMF, resp. Compared with the simulated images shown in Fig. 1, the subjective or qualitative

improvements due to these filters are at best trivial, if any improvements can even be claimed. The

USDSAI values of these four algorithm are given in Table I. The rightmost column of Table I shows

the average USDSAI from the four simulated images of each algorithm. A qualitative visual inspection

and quantitative assessment using the USDSAI values of the Lee, Frost, Kaun filters and AWMF indicate

lackluster results when compared with the image quality and USDSAI values of SRAD, Wiener filtering,

and SBF.

A qualitative assessment of the resulting images after applying SRAD is given in Fig. 3(e)- 3(h) and

visibly shows that the variances in the different classes are decreased. The decrease variances in the

different classes due to SRAD is indicated by significantly larger USDSAI values shown in Table I. The

rightmost column in the SRAD row of Table I gives the average USDSAI value and is noticeably greater

than the average USDSAI values attained by the Nagao, Lee, Frost, Kuan filters, and AWMF.

The result of Wiener filtering shown in Fig. 3(i)- 3(l). Except for the results due to SBF, these results

are perceptively better than the images produced by the other algorithms. The different classes of each

image are well defined and the edges are noticeably more pronounced than in the unprocessed simulated

images shown in Fig. 1(e)- 1(h) and the results of the other algorithms. The enhancements provided by

Wiener filtering results in an increased USDSAI value, even over SRAD. Unfortunately, it could also

equally be argued that a low pass version of the speckle persists and reduction in the intraclass variance

could be improved.

The resulting four images produced by the SBF despeckling method using a applied to the four Field II

simulated images are shown in Figs. 3(m)- 3(p). It is visually obvious that the edges of the various disks

are equivalently as well preserved when compared with the results of the Wiener filter. Equally important

the intraclass variance is decreased in each simulated image. These noticeable contrast improvements
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(a) TI : Two classes (b) TII : Two classes (c) TIII : Three classes (d) TIV : Three classes

(e) JI (f) JII (g) JIII (h) JIV

Fig. 1. Two and three class templates and ultrasound simulations used in the comparison.

are reflected by the USDSAI values in the last row of Table I. Expect forQ̃II
SBF

, which is slightly

less thanQ̃II
Wiener

, the other quantitative results show improved contrast enhancement over the other

algorithms, even over the Wiener filter. The average USDSAI values of the SBF method indicate greater

contrast improvements over the Wiener filter and significantly greater contrast improvements over the

other despeckling algorithms.

B. Using Actual Phantom Image

The SRAD and SBF despeckling methods that performed well on simulated images were evaluated

using an actual ultrasound scan of a phantom. Since the Wiener filter requires prior knowledge of the PSF
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Q̃II
alg

Q̃III
alg

Q̃IIII
alg

Q̃IIV
alg

Average

F Nagao 0.9901 0.9730 1.0315 1.3651 1.09

I Lee 1.2014 1.1760 1.2007 1.2097 1.197

L Frost 1.0479 1.0211 1.0446 1.0457 1.04

T Kuan 1.0007 1.0006 1.0012 1.0016 1.001

E AWMF 1.1005 1.0936 1.0959 1.1025 1.098

R SRAD 1.5344 1.4729 1.8603 1.8187 1.6716

S Wiener 2.0884 1.8423 2.0256 2.0072 1.9909

SBF 1.9974 2.1160 2.1491 2.1144 2.0942

TABLE I

USDSAI VALUES Q̃Ii
alg

FOR THE VARIOUS ALGORITHMS TESTED.

and this paper is not focused on estimating or calibrating the PSF of the ultrasound system, the Wiener

filter was not evaluated. Rather, we visually evaluate the performance of SRAD and SBF at various

iterations. This evaluation uses an actual B mode image taken from a scan of a real phantom. The original

phantom image is shown in the top image of Fig. 4. The phantom consist of three equal size disks with

varying brightness. The three images in Figs. 4(b), 4(d), and 4(f) show the results of SRAD at 10, 25,

and 50 iterations,resp.The images on the right column of Fig. 4 show in Figs. 4(c), 4(e), and 4(g) are

the results of the SBF method using an11× 11 window at 10, 25, and 50 iterations,resp.All the images

in Fig. 4 are shown scaled to eight bit dynamic range, that is 256 gray levels. A visual comparison of

these images show that at the three iterations the brightness of rightmost disk is greater than the middle

disk and the brightness of the middle disk is greater than the the leftmost disk with the results of the

SBF method than SRAD. Additionally, the leftmost darkest disk at 50 iterations almost blends into the

background, while even at the50th iteration of SBF this disk is well pronounced. It is well worth noting

that the bright dots between the leftmost and the middle disks are better preserved with SRAD than SBF.

From the result of this evaluation using an actual ultrasound phantom image, we conclude that SBF is
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better at preserving the contrast of the three disks at a cost of decimating the fine resolution features such

as the bright dots between the leftmost and middle disks.

C. 3-D GVF Active Contour Surface Rendering

Preserving or enhancing the contrast of large blunt objects at the cost of losing or fading smaller objects

is preferred in our ultimate goal of rendering a 3-D surface from 2-D ultrasound slices of an organ such as

a heart, prostate, kidney,etc. In this evaluation we used an linear array transducer to scan an egg shaped

phantom. The 2-D slices are taken at every 1mm along the long axis of the egg phantom. There is a total

of 41 slices and the B mode middle slice of the egg phantom is shown in Fig. 5(a). The 3-D rendering

using a naive implementation of SRAD processed slices yielded a surface that in no way resemble the egg

phantom. So each slice was SRAD processed by meticulously adjusting the parameters and iterations of

SRAD so that a well defined high contrast image was produces. After each slice was optimally visually

contrast enhanced by SRAD, a post despeckling algorithm of morphologically filling in the holes was

applied. The result of the optimized SRAD followed by morphologically filling the holes applied to the

image in Fig. 5(a). Albeit labor intensive, the result of these processes are exceptionally excellent. We

will used the 3-D GVF active contour rendering of these exceptional SRAD with morphological hole

filling slices as ground truth, a gold standard to compare the results of processing with SBF. We applied

the same 75 iteration SBF process using a11× 11 window to each of the 41 slices. This processing was

implemented using Mathworks Matlab 7.0.0.19920 on a Intel P4 3.8 GHZ CPU. The processing time

need by the SBF to process all 41 slices was 8.8268 minutes. The result of SBF applied to the middle

slice is shown in Fig. 5(c).

The 3-D rendering of the final contour using the same number of iteration of the 3-D GVF snake

produced from the 41 slices processed by the human optimized SRAD-morphological hole filling operation

and SBF are shown in Figs. 6(a) and 6(b),resp. The 3-D renderings are displayed so that the worst

part of each 3-D surface is shown. In the 3-D rendering provided by the human optimized SRAD with

morphological hole filling, there is an erroneous indention just above the horizontal bisecting plane. The
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3-D rendering using the SBF processed slices exhibits two unwanted steps above the horizontal bisecting

plane. Both 3-D GVF active contour rendering using the human optimized SRAD with morphological

holes filled and SBF processed perform well in that overall shape of the egg is captured. Estimation of the

volume enclosed by each the surface created from the human optimized SRAD with morphological hole

filling errs by approximately 7% of the true volume. Volume estimate enclosed by the 3-D GVF surface

using SBF processed slices yields a 10% error to the true volume. The slightly high error using the 3-D

rendering from the SBF processed slices is insignificant when one considers the effortlessness of attaining

SBF processed slices over optimizing each slice with SRAD and subsequently applying a morphological

hole filling operation.

V. CONCLUSION

The removal or reduction of speckle noise while preserving or enhancing edge information of an

ultrasound image is an extremely difficult task. Since the GVF is derived from an edge map, robustly

despeckling each slice is vital prior to apply the 3-D GVF snake to determine a surface from ultrasound

slices. We consider of a wide variety of filtering algorithms for this pre-rendering step. The despeckling

methods describe in this paper and in general scrutinize every pixel values. We present a novel iterative

despeckling method SBF that at each iteration only scrutinize the value, which are considered outliers.

Without using the outlying values to determine the local, the SBF method replaces these outliers by values

that approach the mean of the local homogeneous region. Each iteration of this new method compress

the image pixel values so that the differences in interclass means are preserved or possibly enhanced

while the intraclass variance is decreased. The superior contrast enhancement preformance of the SBF

method is established by our experimentation using Field II simulated ultrasound images and evaluated

with USDSAI performance metric defined in equation (39). Our next experimentation evaluation compare

the anisotropic diffusion method SRAD with SBF on an actual ultrasound image of a phantom consisting

of three disks of the same size but varying brightness. The SBF exhibited excellect contrast improvements

of the three disks over SRAD, but at the cost of fading the small bright spots. This tradeoff is preferred
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in our ultimate goal of applying a 3-D GVF snake to render an accurate surface. Our last experiment

shows that the surface found by the 3-D GVF snake using the SBF processed slices is comparable in

size, shape, and volume of the surface rendered by applying the 3-D GVF snake to the tediously human

optimized SRAD and morphologically hole filled slices.
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Fig. 2. The resulting images from various adaptive filtering algorithms.
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Fig. 3. The resulting images from AWMF, SRAD, Wiener, and SBF filters.
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(a) Original phantom image.

(b) 10 iterations of SRAD. (c) 10 iteration of SBF.

(d) 25 iterations of SRAD. (e) 25 iteration of SBF.

(f) 50 iterations of SRAD. (g) 50 iteration of SBF.

Fig. 4. The resulting images from 10, 25, 50 iterations of SRAD and SBF.
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Fig. 5. The original middle slice, the processed slice using SRAD (optimized by human interactions) and a morphological hole filling

operation, and SBF using an11× 11 window.
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(a) 3-D surface rendering of an egg using a human

optimized SRAD followed a morphological hole filling

operation.

(b) 3-D surface rendering of an egg using SBF.

Fig. 6. The 3-D surface renderings of the egg phantom where each slice is processed with the visually optimized SRAD followed by a

morphological hole filling operation and the SBF using an11× 11 window.
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(a) The side view of egg using SRAD. (b) The side view of egg using SBF.

(c) The top view of egg using SRAD. (d) The top view of egg using SBF.

Fig. 7. Side and top views of the 3-D rendering of the egg phantom using the human optimized SRAD followed by a morphological hole

filling operation and the surface rendering using SBF.
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Abstract

This paper proposes a robust method to restore piecewise constant signals contaminated by additive

and/or multiplicative noise. Additionally, the signal maybe distorted by the underlying physics of the

signal acquistion system. The possible distortion caused by an signal acquistion system is modeled as a

convolution with some impulse response. Analytic analysis will establish that when the signal is view

as a stochastic process and regardless of whether the noise is additive or multiplicative, exact or perfect

restoration is pausible. The implementation of these well known and firmly established analytic facts

about random processes will utilize a stochastically driven filter that we appropriately call the squeeze

box filter. We will empirically show that the squeeze box filter can provide a faithful and accurate

solution to the additive and multiplicative noise restoration problems under the regularization constraint

that the ideal or desired signal is piecewise constant and provided that the expected value,i.e. mean

or average, of the stationary noise is knowna priori. Even if the expected value of the noise is not

known, the proposed filtering method produces a robust method to decrease variances within intervals

where the signal is a constant value, while the opposing task of preserving edges is maintained.
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A Stochastic Approach to the Noise

Restoration Problems

I. I NTRODUCTION

The physical nature of ultrasonic sound wave as an imaging modality allows a safe (uses

non-ionizing energy), noninvasive, and relatively inexpensive medical diagnostic imaging tool.

Though these justifications for using ultrasound images as a medical diagnostic tool are ap-

pealling, the images provided by an ultrasonic imaging system is relatively unfavorable when

compared to systems that use X-rays (e.g.film-screen or digital radiography, fluoroscopy, com-

puted tomography) and nuclear magnetic resonance. The basic physics of ultrasound imaging

and other medical imaging modalities are well described in [1].

As with all known nonbiological imaging systems, the images produced by an ultrasonic

imaging system are degraded by some form of noise. The noise inherent to ultrasound imaging is

dependant on several factors such as axial/lateral resolutions of the transmit/receive frequencies,

axial and lateral distances from the transducer, the image resolution, the characteristics of

the tissue(s), organ(s), or object(s) being scanned, electronic noise, scalar quantization of the

reflectivity values,etc. Though the appearance of the noise can vary, the inherent noise can

corrupt the ultrasound system by rendering an image with a grainy texture, that is the image

appear contaminated with “salt and pepper” like texture. This type of noise is commonly called

speckle by the ultrasound and synthetic aperture radar communities. To show how speckle

appears in a typical medical ultrasound image, we offer Fig. 1(a), which displays a B-mode

logarithmically compressed envelop detected ultrasound image of a phantom. The phantom
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consist of three disks each with different intensity values and are approximately 50 pixels in

diameter. The centers of each disk are approximately on row 225. The phantom also contains

several point scatters with large intensities along row 90 and along column 120. The noise is

evident in this image where the graininess is prominent throughout the entire image and the

salt and pepper texture could appear coarser in the far field1 (not evident in this image). Also

evident in Fig. 1(a) are the shadow artifacts that occur away from the transducer immediately

below each high intensity point scatters and appear like darkened comet tails. Though not as

visually evident, a shadow artifact is present below the center disk. This shadowing phenomena

is a known problem with ultrasound imaging and results in smaller intensity values on average

within the shadow regions to erroneously occur. The shadowing problem is beyond the scope

this paper and we will address this in our future research.

In Fig. 1(b) we show the intensity profile of row 225 of Fig. 1(a). This row approximately

bisects all three disks throught the center. From the profile in Fig. 1(b) it is difficult to determine

which intervals corresponds to the various three disks. Even more difficult is to determine exactly

the actual reflectivity values2 of each phantom disk, since the processing used to produce a

visually appeasing image skews these values. In Fig. 1(c) is a plot of a possible noise free

signal of the intensity profile signal shown in Fig. 1(b). This piecewise constant signal was

determine by taking the average in intervals that are known to be a constant. It can be observed

from the proposed noise free signal shown in Fig. 1(c) that the intensity value in interval

[50, 100] corresponds to the left most black (low intensity value) disk, the intensity value in

interval [140, 190] corresponds to the middle disk, and the intensity value in interval[240, 290]

1The region away from the transducer and pass the focal point.

2The actual reflectivity value directly relates to tissue/organ elasticity, compressibility, and/or density.
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corresponds to the right most brightest (high intensity value) disk of Fig. 1(a).

In Fig. 1(d), we show the intensity profile of column 165, which approximately vertically

bisects the middle disk of Fig. 1(a). Fig. 1(e) is a plot of a piecewise constant signal determined

by taking the average with intervals that are known to be constant. The lower intensity value

in the right most interval of the plot in Fig. 1(e) is a shadowing artifact. Ideally, the average

intensity value in this interval should be the same as the average intensity value in the left most

constant interval of Fig. 1(e).

In creating the noise free piecewise constant signal in Fig.s 1(c) and 1(e), we used our

knowledge of the phantom to determine the values and location of each constant intervals,

that is we knew where the edges are located. This in all practical and clinical use of medical

ultrasound imaging as a diagnostic tool is not the case. Determining a possible noise free signal

such as the ones shown in Fig.s 1(c) and 1(e) from the noisy signals shown in Fig.s 1(b) and 1(d)

is a classical signal restoration problem.

The restoration problem of determining the ideal signal from a distorted and noisy signal is

considered ill posed in which the solutions are nonunique and/or it maybe difficult to verify

the significance of the proposed solution. To consider the problem well posed, eithera priori

knowledge of the desired signal is needed or constraints on the ideal signals are required. The

latter is calledregularization. Some regularization constraints for signals are proposed in [2], [3].

Some examples of two dimensional regularization constraints for images are proposed in [4]–

[7]. To avoid being clouded by dimensionality, the explanations and examples given in this

paper are strictly using one-dimensional signals. This allows us to present our ideas on signal

restoration in a clear concise manner without being bothered by the technicalities of extending

one-dimensional algorithms to multiple dimensions. Since the composition of ultrasound images
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(a) Ultrasound Phantom Image

(b) Intensity profile of row 225 (c) Row 225 noise free signal

(d) Intensity profile of column 165 (e) Column 165 noise free signal

Fig. 1. Ultrasound phantom image, the intensity profiles, and possible noise free signals.
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is an synchronous arrangement of one dimensional signals, the analysis and processing of one

dimensional signal in this paper is relevant to enhancing and improving ultrasonic imaging.

The mathematical modeling of ultrasound data is debateable. The evidence provided by Wagner

et. al. in [8], [9] suggest that ultrasound speckle is multiplicative and Rayleigh distributed. While

Loupaset. al. in [10] and Karamanet. al. in [11] claim speckle is composed of a combination

of multiplicative and additive components3. The determination of the best method to model

ultrasound data is beyond the scope of this paper. Instead this paper will focus on the usual

additive and multiplicative signal restoration problems.

The two usual restoration problems [12] are to determine the ideal signalf(n) from the

detected signalg(n) given by the additive model

g(n) = p(n) ∗ f(n) + η(n) (1)

or by the multiplicative model

g(n) = p(n) ∗ {f(n)η(n)} (2)

wherep(n) denotes the impulse response of some system, the asterick symbol represents linear

convolution, andη(n) is a random variable with some probability density function (PDF). The

noise samplesη(n) are generally assumed to be white and Gaussian distributed. Moreover,

the noise is typically assumed to be independent off(n). Generally, there is an unmentioned

assumption that the noise is a wide sense stationary process and we will accept this underlying

assumption throughout this paper. In the models given in equations (1) and (2), the distorted

signal is modeled as a convolution by an impulse response,p(n). This distortion is usually a

3They do not mention the noise distribution.
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blurring or smoothing of the desired signal. Thus the impulse response is in nature a low pass

filter.

The additive restoration problem given in equation (1) has extensively been studied and many

solutions to this problem have been employed with varying success. These solutions include

linear filtering such as a moving average, non-linear filters such as the various adaptive median

and mean filters [4], [23], Weiner filtering [13], wavelet thresholding [12],etc.

Methods to solve the multiplicative restoration problem of equation (2) are and have been of

great interest to ultrasound and SAR image processing societies. Solutions to the two dimensional

extension of the multiplicative noise model have been proposed in [7], [10], [11], [14]–[22]. None

of the proposed method especially for multiplicative noise restoration claim an exact restoration

of the ideal signal and may only offer subjective improvements. Provided the usual assumptions,

the noise is stationary and is a zero mean Gaussian distributed random process, are accepted,

exact reconstruction of the ideal signal will be shown to be analytically possible from both

the additive model given in equation (1) or the multiplicative model given in equation (2).

Though exact reconstruction is possible in an analytic sense, the practical implementation of

these analytic concepts is not without trade-offs. Namely, the task of determining the charac-

teristics of a random process,e.g. mean and variance, from only a few recorded samples is

debateable. Nevertheless, we will reasonably compromise when required and develop a practical

implementation of the analytic concepts presented in this paper. Our examples will empirically

show using the assumptions that the noise is white, normally distributed, and stationary that the

stochastically driven proposed filter robustly extracts the ideal piecewise constant signal.
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II. VARIOUS SIGNAL RESTORATIONMETHODS

In this section we will describe a variety of signal restoration methods. The performance of our

proposed method will be compared with the performance of the filters described in this section.

The quantitative and qualitative assessment of this comparison will be given in section V.

A. Order Statistic Filters

In [23] Bovik et. al.described a family of order statistic filters (OSF). The OSF replaces each

and every sample of the noisy signal with the weighted sum of ordered values taken from an

odd length window. More precisely, given a window of odd lengthN , the value of the current

sample is set to

gOSF (n) =
n+M∑

i=n−M

αig̃(i) (3)

whereM =
⌊

N
2

⌋
, b·c is the greatest integer function,g̃(i) ∈ {g(i) | n−M ≤ i ≤ n + M}, and

g̃(i) are ordered so that̃g(i) ≤ g̃(i + 1) for all i ∈ [n − M, n + M − 1]. These weightsαi

are computed so that the expected value of the filtered signal is optimal in the mean squared

error sense. The optimally of the OSF is under the constraint that the signal is constant and the

weights of the filter are dependant on the additive noise distribution. For example, ifαi = 1
N

for

all i ∈ [n −M, n + M ], then the filter described in equation (3) is the moving average filter4.

Bovik et. al. analytically show the moving average is optimal, that is the expected value of the

mean squared error is minimized, when the ideal signal is constrainted as an constant signal and

the noise is zero mean and normally distributed. Ifαn = 1 and αi = 0 for all i 6= n, then the

filter in equation 3 is the median filter. The justifications in [23] does not claim that the median

4The moving average filter is technically not a OSF, since ordering of the windowed values are not required. We place this

example in this section purely for the purpose of efficiency.
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is optimal with any of the considered noise distribution. We will include the median filter in our

comparison in section V so that a wide range of OSF filters are represented in the experimental

comparison. The last OSF we will include in our comparative study has a window length of

nine and the following symmetric weight values:

αn = 0.36469

αn−1 = 0.23795 = αn+1

αn−2 = 0.06965 = αn+2

αn−3 = 0.02904 = αn+3

αn−4 = −0.01899 = αn+4.

(4)

In [23] Bovik et. al.claims the OSF with the weights given in equation 4 is optimal in minimizing

the expected value of the mean squared error for a Laplacian noise distribution and provided

that the ideal signal is a constant.

B. Wiener Filter

The Wiener filter [13] is a frequency domain solution to the additive noise problem in

equation 1. Letg(n) ←→ G (ejω) be discrete time Fourier transform (DTFT) be pairs, then

the Wiener filter is implemented in the Fourier domain as

gwnr(n)←→ Gwnr

(
ejω
)

= G
(
ejω
)
W
(
ejω
)

(5)

where

W
(
ejω
)

=
P ∗ (ejω)

|P (ejω) |2 + σ2
η

(6)

andσ2
η is the variance of the additive noise component. It is important to note that the performance

of the Wiener filter is dependant ona priori knowledge or an approximation of the transfer

function of p(n) and the noise varianceσ2
η.
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C. Wavelet Thresholding

It has been shown in [24] and [25] that applying a threshold operator to the discrete wavelet

transform (DWT) coefficients is a useful method to remove or reduce additive white noise. The

DWT of a signal described by Mallat in [26] decomposes the signal into various subbands.

Assuming that the noise power is below some threshold, then applying a hard [25] or a soft

thresholding [24] operation to the DWT coefficients reduces the noise power. In effect the inverse

DWT (IDWT) reconstruction of the threshold coefficients produces an approximate noise free

signal.

Let w(n) = DWT{g(n)} be the DWT ofg(n). For T ≥ 0 the hard thresholding operation is

defined as

whard(n) =


w(n) if |w(n)| > T

0 otherwise.
(7)

The soft thresholding operation is defined as

wsoft(n) =


w(n)− T if |w(n)| > T andw(n) > 0

w(n) + T if |w(n)| > T andw(n) < 0

w(n) otherwise.

(8)

An approximation of the additive noise free ideal signal is taken to be the IDWT ofwhard(n) or

wsoft(n). The robustness of the thresholding operations are dependant on the choice ofT and

a optimal choice [24], [25] isT = ση

√
2 log N whereση is the noise standard deviation andN

is the length ofg(n).

III. A S TOCHASTICALLY DRIVEN FILTER

Even without anya priori knowledge of the noise characteristics besides stationarity, the

proposed stochastically driven filter will provide a meaningful restoration of a piecewise constant
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signal. We use the term “meaningful” in the sense that the proposed restoration method will

produce a constant value in intervals where the ideal signal is a constant value. Equally as

important, the opposing task of preserving step up and step down edges will be maintained.

For a random variableX it is well known and can be shown that even without prior knowledge

of the stationary noise distribution that

E{cX + b} = cE{X}+ b (9)

whereb, c are constants,E{X} =

∫ ∞

−∞
xPrX(x)dx, and PrX(x) is the probability density function

(PDF) of the random variableX. Importantly, determining the expected value or mean of a

random value will preserves edges, that is for constantsc1 6= c2, X1 and X2 are independent

and identically distributed random variables, it can be deduced that

E{c1x1 − c2x2} = (c1 − c2)E{X} 6= 0

provided thatE{X} 6= 0.

From the well know fact given in equation (9) and without loss of generality letb = 0, a

simple algebraic malipulation yields

c =
E{cX}
E{X}

. (10)

Provided that the expected value of the random variableX is not equal to zero, the triviality of

equation (10) yields thea priori unknown valuec provided thatE{cX} andE{X} are known

or can be determined. In the context of the multiplicative noise restoration problem modeled in

equation (2) and ignoring the impulse response5 p(n) for now, we arrive at thenth sample of

the ideal signal from

f(n) =
E{g(n)}
E{η(n)}

(11)

5Restrict the impulse response to be the delta function. We will counter effect the impulse response later in this paper.
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whereg(n) andη(n) are cast as random variables. If the expected value of the noise termη(n)

is known and not equal to zero, then to achieve exact restoration it is only required to determine

the expected value of the detected or acquired signalg(n).

To determine the expected value ofg(n), we view the local extrema, that is the local peaks

and valleys, to be outliers of some PDF. In opposition to the methods in section II, where every

sample is scrutinized, the filtering method presented in this section only scrutinizes the samples

that are considered outliers. These outliers are replace with a value that occurs with greater

probability. To ensure that the outliers are replaced with a value with a greater probability, we

replace them with the mean determined from some local neighborhoodN . It is important to keep

in mind that the local extrema are considered outliers and should not be used in the determination

of the local mean. The choice of the neighborhoodN is extremely important, since the mean of

some PDF is determined by samples inN . This produces another sequence with locally reduced

variance. This new sequence may contain local extrema, which we consider as outliers. Thus, the

filtering process is iterated until the limiting sequence in the Cauchy sense,i.e. the root signal,

is attained. More precisely, to arrive atE{g(n)} for all n, we propose the following iterative

method.

1) Each iterationi begins by determining the set of locations of local maxima (peaks) and

local minima (valleys). The locations of these extrema are defined by the set

NE = {n | gi−1(n) meets condition 1 or 2} (12)

Condition 1:gi−1(n) > gi−1(n− 1) andgi−1(n) > gi−1(n + 1),

Condition 2:gi−1(n) < gi−1(n− 1) andgi−1(n) < gi−1(n + 1).

The local peaks and valleys of a length twenty randomly generated sequence are shown

in Fig. 2 as4 and5, resp.This length twenty sequence only has seven samples that are
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not considered a local extremum. They occur at sample 0, 3, 4, 6, 14, 18, and 19. The first

and last samples are never considered as extrema and get replaced by the local mean after

convergence is verified. All the other samples are either a local peak or a local valley, so

in this example the setNE = {1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17}.

Fig. 2. Step 1 of SBF:4 indicates a local maximum and5 indicates a local minimum.

2) Without using the local extrema values, poll neighboring samples to determine the local

mean. These extrema are replaced with the local mean values that is forn ∈ NE

gi(n) =
1

|N |
∑
m∈N

gi−1(m) (13)

whereN is some local neighborhood ofn, |N | is the cardinality of setN , andn /∈ N .

In Fig. 3, we illustrate with astricks (∗) the possible values used to calculate the local

means of a local maximum (4) and a local minimum (5) in Fig.s 3(a) and 3(b),resp.

The values shown as4 and5 are not used to calculate the local mean. In Fig. 4 we show

the replacement values of each extrema as “◦”s.
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(a) A local maximum is shown with a4.

The astricks (∗) show possible values used

to compute the local mean.

(b) A local minimum is shown with a5.

The astricks (∗) show possible values used

to compute the local mean.

Fig. 3. Step 2. The∗ denote the possible sample values used to determine the local mean. Note that the local peak shown as

a4 and the valley shown as5 are not used to determine the local mean.

3) If convergence in the Cauchy sense is not attained, that is

∑
n

|gi−1(n)− gi(n)| > ε (14)

for some predefinedε > 0, then another iteration is performed. If Cauchy convergence

is attained, thengi(n) is termed the root signal. Essentially nonconvergence indicates a

substantial amount of peaks and valleys still exists. Convergence indicates that the outlier

values are removed. The ideal signal is the root signal in the additive noise case

f(n) ≈ gi(n). (15)

In the multiplicative noise restoration case the ideal noise free signal is taken to be the
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Fig. 4. Step 3 of SBF: local mamimum (4) and local minimum (5) are replaced by the mean within a local neighborhood

(◦).

root signal scaled by the recipocal of the nonzero expected value of the stationary noise,

f(n) ≈ gi(n)

E{η(n)}
. (16)

To show that this method produces a convergent sequence of sequences, letgi(n) be the

sequence produced by theith iteration of the proposed method, whereg0(n) = g(n). Denote the

local minimum value in a neighborhoodN ′ of sequencegi(n) asmi = min{gi(n) | n∀N ′} and

analogously the local maximum value inN ′ of the sequencegi(n) as Mi = max{gi(n) | n ∈

N ′}. It is clear by the definition thatmi ≤ gi(n) ≤Mi or equivalently restatedgi(n) ∈ [mi, Mi]

for all n ∈ N ′. Suppose at some iterationi that gi(n
′) is a local extremum, we replacegi(n

′)

with the mean of{gi(ñ) | ñ ∈ N and ñ 6= n′}. We getmi ≤ gi+1(n
′) ≤ Mi. Thusly, we can

ascertain thatmi ≤ mi+1 andMi+1 ≤ Mi. Equivalently restated, we have a nested set relation

[mi+1, Mi+1] ⊂ [mi, Mi]. As the iterationi is allowed to go to infinity, the nested set of possible

values ofgi(n) converges to some single value. Since the local peaks and valleys are iteratively

replaced by a collasping range of values over some local neighborhood, we aptly name this
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method the squeeze box filter (SBF). In our implementation of the SBF, we only check for

Cauchy convergence, that is give someε > 0 when

∞∑
n=−∞

(gi(n)− gi+1(n))2 < ε (17)

thengi+1(n) is deemed the limiting signal or what we like to refer to as the root signal.

IV. SIGNAL RESTORATION

A. Additive Noise Restoration

There are a number excellent methods to perform restoration for signals degraded by the

additive noise of equation (1) that are not constrainted to piecewise constant signals. We admit-

tingly believe when no such regularization constraints are provided, the additive noise restoration

provided by the SBF maybe subpar when compared with methods such as wavelet thresholding,

median filtering, Wiener filtering, OSF, and others. When constrainted to piecewise constant

sequences the robustness of the SBF is exemplary in the two opposing task of deceasing the

variation in intervals where the ideal signal is constant and preservation of edges.

In the context of the additive model given in equation (1), assuming the noise has a stationary

zero mean PDF, to attain the ideal signalf(n), it is only required to determine the expected

value of the detected signalg(n), that is

E{g(n)} = E{p(n) ∗ f(n) + η(n)}

= p(n) ∗ f(n) + E{η(n)}

= p(n) ∗ f(n).

Thus, a robust method to arrive atE{g(n)} yields p(n) ∗ f(n). A deconvolution method such

as applying the Weiner filter [13] toE{g(n)} would provide an estimation for the ideal signal

f(n). This step is ignored in the additive noise examples in section V.
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B. Multiplicative Noise Restoration

Our proposed restoration method is not limited to reconstruction of the ideal signal polluted

by zero mean white Gaussian noise, but given this typical assumption of the noise, it will be

shown that the blurring caused by the system impulse response can be mathematically accounted

for in the variance of the density function. It will be shown that this translates to including the

l2-norm of the impulse response in the final scaling of the root signal.

The SBF requires that the expected value of the noise to be nonzero. When starting with a zero

mean random variable, to productively apply the SBF, the random variable must be transformed

so that the SBF can be applied to the resulting nonzero mean random variable. So given a zero

mean normally distributed random variableX with varianceσ2
X the PDF is defined as

PrX(x) =
1

σX

√
2π

e
− x2

2σ2
X (18)

whereσ2
X = E{(X −E{X})2}. Now, the random variable defined by taking the absolute value

y = |x| is a non-Gaussian distributed random variable andy ∈ [0,∞) with a nonzero mean,

unless the variance of the original random variable was zero6. The PDF ofy is the exponential

distribution

PrY (y) = PrY (|x|) =


PrX(0) if y = 0

2PrX(y) if 0 < y

(19)

where PrX(x) is given in equation (18). The expected value ofY is determined as

E{Y } =

∫ ∞

0

yPrY (y)dy

=
2

σX

√
2π

∫ ∞

0

ye
− y2

2σ2
X dy. (20)

6This is consider a noninteresting case and save for this footnote is ignore.
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With a simple substitution (u = y2), the integral in equation (20) can be evaluated and

E{Y } = σX

√
2

π
(21)

is easily derived. Ify = c|x| for some constantc ≥ 0, then

E{Y } = cσX

√
2

π
. (22)

When the ideal signal is equal to a constantf(n) = c ≥ 0, the expected value of the absolute

value of the multiplicative model from equation (2) is

E{|g(n)|} = E{|p(n) ∗ (f(n)η(n))|}

= cE

{∣∣∣∣∣
∞∑

m=−∞

p(m)η(n−m)

∣∣∣∣∣
}

. (23)

We have assumed that the noise component is zero mean, normally, independent, and identically

distribute random variable. It is is shown in [27] that the weighted sum of normally distributed

random variables

X =
∞∑

m=−∞

p(m)η(n−m) (24)

is a normally distributed random variable with a standard deviation of

σX = ση

√√√√ ∞∑
m=−∞

p2(m). (25)

Substituting equation (25) into equation (22) in the context of equation (23), we get

E{|g(n)|} = cση

√√√√ 2

π

∞∑
m=−∞

p2(m). (26)

Using the root signal of the SBF to determineE{|g(n)|}, the ideal signalf(n) = c is acquired

by an appropriate scaling of the root signal, that is

f(n) = E{|g(n)|}
√

π

2σ2
η

(
∞∑

m=−∞

p2(m)

)− 1
2

. (27)
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V. EXAMPLES AND COMPARATIVE RESULTS

In this section, we provide examples using three different piecewise constant sequences

corrupted by a stationary zero mean white Gaussian noise and a signal acquired from one column

of a Field II simulated ultrasound image [28]. The three noisy piecewise constant sequences are

either convolved with the delta function, a known finite length low pass filter withl2-norm equal

to one, or the known low pass filter scaled so that thel2-norm is equal to three. The values of

the unit impulse response are listed in table I and shown in Fig. 5. For all the test sequence

p(0) 0.4714

p(−1) 0.4362 p(1)

p(−2) 0.3457 p(2)

p(−3) 0.2345 p(3)

p(−4) 0.1363 p(4)

p(−5) 0.0678 p(5)

p(−6) 0.0289 p(6)

p(−7) 0.0105 p(7)

p(−8) 0.0033 p(8)

p(−9) 0.0009 p(9)

TABLE I

VALUES OF THE UNIT l2-NORM IMPULSE RESPONSE USED IN THE TEST SEQUENCES.

η(n) is a stationary white zero mean normally distributed random variable,p̃(n) = 3p(n), and

∗ denotes linear convolution.
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Fig. 5. The length 19 impulse response.

The ideal sequences used in table II are

f0(n) =


1 if 0 ≤ n ≤ 99

5 if 100 ≤ n ≤ 199

1 if 200 ≤ n ≤ 299,

(28)

,

f1(n) =


5 if 0 ≤ n ≤ 99

1 if 100 ≤ n ≤ 199

5 if 200 ≤ n ≤ 299,

(29)

and

f2(n) =



10 if 0 ≤ n ≤ 99

5 if 100 ≤ n ≤ 199

1 if 200 ≤ n ≤ 299

5 if 300 ≤ n ≤ 399.

(30)

A. A Comparative Qualitative Assessment

The original noisy signals and results of the SBF are shown in Fig.s 8, 9, 10, and 11,resp.

Though exact restoration is desired, the resulting signal produced by the SBF resemble the ideal

piecewise constant signal. It is evident that the SBF is proficient at decreasing the variance in
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I g1(n) = f0(n) + η(n)

II g2(n) = f1(n) + η(n)

III g3(n) = f2(n) + η(n)

IV g4(n) = |f0(n)η(n)|

V g5(n) = |p(n) ∗ [f0(n)η(n)]|

VI g6(n) = |p̃(n) ∗ [f0(n)η(n)]|

VII g7(n) = |f1(n)η(n)|

VIII g8(n) = |p(n) ∗ [f1(n)η(n)]|

IX g9(n) = |p̃(n) ∗ [f1(n)η(n)]|

X g10(n) = |f1(n)η(n)|

XI g11(n) = |p(n) ∗ [f2(n)η(n)]|

XII g12(n) = |p̃(n) ∗ [f2(n)η(n)]|

TABLE II

TEST SEQUENCES.

intervals where the ideal signal is a constant while greatly preserving both step up and step down

edges.

Fig. 6 is a Field II simulation [28] of an B-scan envelop detected and log compressed

ultrasound image of five circular disks of the same diameter. The five disks are representatives of

highly reflective cysts. This simulation is representative an image produced by a typical clinical

ultrasound. Though the extension of the SBF to a two dimensional filter is straightforward, we

save this extension for future publications and examine only one column of the simulated image.

Fig. 7(a) we show the intensity profile of the center column of Fig. 6. The results of the SBF

and moving average filter are in Fig. 7(b). The solid plot of Fig. 7(b) is the root signal found

by the SBF and the dashed plot is the signal produced by the moving average filter. Though
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we created the image where the ideal reflectivity values of the background are set to one and

the values within the disks are set to ten, Field II, which claims a realistic representation of

an actual ultrasound images, has rendered a visually appealing image but the true reflectivity

values maybe impossible to recover. Nonetheless and important to visual acuity, the SBF has

traced out a profile that is large constant in intervals that corresponds to the location occupied

by the disks while the large differences in intensity values with intervals occcupied by the disks

and the background are preserved. The varying degree of the intensity values of the root signal

produced by the SBF in intervals occupied by the disks may be explain by a unknown spatially

varying PSF in the original simulated image. A spatially varying PSF is a known phenomena

that occurs with fixed focus ultrasonic imaging systems. Since the PSF is spatially varying, it

is reasonable to believe that thel2-norm of the impulse response of the signal in each column

of the simulated image is varying. Thus, each homogeneous intervals are scaled differently.

This example serves to fortify our claim that for either additive or multiplicative noisy signals,

which are representative of signals produced by ultrasonic imaging systems, the SBF is robust

in reducing the variance in regions where the signal is constant while maintaining the opposing

task of edge preservation.

B. A Comparative Quantitative Assessment

To provide a quantitative assessment on the signal restoration performance of the SBF, the

moving average filter, the median filter, Boviket. al.’s OSF optimized for a Laplacian noise

distribution, Wiener filter, the DWT hard and soft thresholding methods, we use a modified well

known contrast metric used to measure contrast. For test sequence I, II, IV, V, VII, VIII, X, and
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Fig. 6. Field II ultrasound image simulation.

XI to objectively evaluate the performance of a restoration algorithm letQ̂(alg) be defined as

Q̂(alg) =
(µ1 − µ2)

2

σ2
1 + σ2

2

(31)

wheregalg(n) is the sequence produced by restoration algorithm ’alg’,

µi =
1

|Ii|
∑
n∈Ii

galg(n), (32)

σ2
i =

1

|Ii|
∑
n∈Ii

(galg(n)− µi)
2 , (33)

I1 = [0, 99]
⋃

[200, 299], and I2 = [100, 199]. For test sequence III, VI, and IX, we use the

following performance metric

Q̂(alg) =
(µ1 − µ2)

2 + (µ1 − µ3)
2 + (µ2 − µ3)

2

σ2
1 + σ2

2 + σ2
3

(34)

where µi is defined in equation (32),σ2
i is defined in equation (33),I1 = [0, 99], I2 =

[100, 199]
⋃

[300, 399], and I3 = [200, 299]. The performance metric we use is the following

ratio

Q(alg) =
Q̂(alg)

Q̂(id)
(35)
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(a) Profile of center column of

Field II simulated image.

(b) SBF scaled (solid) and moving

average (dashed) signals.

Fig. 7. Intensity profile of center column of Fig. 7, SBF root, and moving averaged sequences.

where gid(n) = g(n). When Q(alg) is a large number greater than one (preferred), thenalg

performs well. IfQ(alg) is equal to one, thenalg does not provide any improvements to the

noisy signal. IfQ(alg) is less than one, then the tested algorithmalg degrades the noisy signal.

In our experiment when performing the multiplicative noise restoration with Bovik’s OSF

optimized Laplacian distributed noise, DWT Hard and Soft thresholding, Wiener filtering, we

logarithmically transformed the noisy signal in an attempt to cast the restoration as additive

noise, which these filters were design to overcome. The exponentially transformed values of

these filters were then used in the quantitative evaluation. In table III we list the results of these

quantitative evaluations. The highest performance values in every case were attained by the SBF.

This evaluation provide evidence that the SBF performs exceedingly well.

VI. CONCLUSION

The additive and multiplicative signal restoration problem is relevant to many interesting

applications like ultrasound and SAR imaging. In this paper, we constraint the solution to
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Test sequence→ I II III IV V V I V II V III IX X XI XII

Q(MA) 4.91 5.3 4.66 9.62 2.54 1.98 9.46 2.03 2.07 18.0 2.26 1.89

Q(Median) 4.35 7.79 5.22 4.65 1.75 1.41 5.81 1.82 1.65 14.0 1.65 1.64

Q(OSF ) 5.24 6.59 5.42 6.01 2.0 1.53 6.49 1.83 1.64 12.77 1.72 1.66

Q(Wnr) 1.0 1.0 1.0 1.26 0.79 1.0 1.18 0.78 0.74 1.32 0.98 1.11

Q(Hard) 4.07 3.19 4.01 4.15 1.1 0.0 1.77 1.45 0.03 8.64 1.26 0.09

Q(Soft) 0.60 0.69 0.81 0.01 0.02 1.0 0.04 0.01 0.82 0.18 0.15 0.9

SBF 7.18 7.88 5.4 23.01 20.21 20.82 36.11 7.58 6.77 71.31 16.35 21.56

TABLE III

Q VALUES FOR THE MOVING AVERAGE (MA), MEDIAN (MEDIAN ), BOVIK ’ S OSFOPTIMIZED FOR ADDITIVE AND

LAPLACIAN DISTRIBUTED NOISE (OSF ), WIENER (Wnr), DWT HARD THRESHOLDING (Hard), DWT SOFT

THRESHOLDING (Soft), AND SBF RESTORATION METHODS.

piecewise constant signals. When the restoration problem is viewed in the stochastic framework,

it can be analytically shown that the ideal signal can be attained from a well know and

easily provable property of the expectation operator. The practical implementation of this easily

provable property is problematic and philosophically debateable. We overcome these problems

by designing a stochastically driven method the SBF to determine the root signal of a noisy

signal. In the additive noise restoration, the SBF was able to extract a exceedingly accurate

depiction of the ideal noise free signal. The empirical evidence shows in the multiplicative noise

restoration case that multiplication with the analytically derived scaling factor to the root signal

yields a signal that very well resembles and very closely approximates the ideal signal. At the

very least, the claim that the SBF produces a signal with reduced variances in intervals where

the ideal signal is constant while the opposing task of preserving edges is equally maintained is
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(a) Test sequence I (b) Test sequence II (c) Test sequence III

(d) Test I:gSBF (n) (solid line) and

gOSF (n) (dashed).

(e) Test II: gSBF (n) (solid line)

andgMEDIAN (n) (dashed).

(f) Test III: gSBF (n) (solid line)

andgOSF (n) (dashed).

Fig. 8. Test I, Test II, and Test III noisy, ideal, SBF root, and next best Q valued sequences.

subjectively and objectively supported by the results of our experimentations.
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(a) Test sequence IV (b) Test sequence V (c) Test sequence VI

(d) Test IV: gSBF (n) (solid line)

andgMEAN (n) (dashed).

(e) Test V: gSBF (n) (solid line)

andgMEAN (n) (dashed).

(f) Test VI: gSBF (n) (solid line)

andgMEAN (n) (dashed).

Fig. 9. Test IV, V, VI noisy, ideal, SBF scaled root, and moving averaged sequences.
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Abstract— Reverberation and multi-path reflection artifacts
are a common problem in ultrasound imaging. We propose a
novel method to remove these artifacts. Regions adversely af-
fected by these artifacts are replaced with textures that resemble
the underlying object(s), which were originally obscured. Our
proposed method incorporates optimally soft thresholding the
2D discrete wavelet transform of the artifact regions to produce
a near optimal estimate of the reflectivity values due only to
the reverberation and multi-path reflection artifacts. Simply
subtracting this estimate from the original reflectivity values,
we attain a near optimal estimate of the artifact free reflectivity
values. We provide B mode images to substantiate the benefits
of this method in producing a more useful and visually pleasing
image.

I. I NTRODUCTION

The use of ultrasound to provide a useful imaging tool is
preferred because of the noninvasive and nonionizing nature
of this realtime imaging system that can provide functional
information like motion and velocities. Although the images
and videos produced by a ultrasound system are generally
beneficial, its usefulness as a tool to aid medical diagnosis can
be improved by removing the various artifacts that may arise.
Two types of ultrasound artifacts are caused by reverberation
and muli-path reflection of the ultrasonic sound wave as it
travels across or around highly reflective objects or interfaces.
The description of these artifacts given in [1] are paraphased
in the following:

• Reverberation artifacts occur when reflected ultrasound
energy is reflected back and forth between two closely
spaced interfaces during signal acquistion and prior to
the next transmitted pulse.

• Artifacts due to multi-path reflection occur when the
ultrasound beam is nonperpendicularly reflected or re-
fracted off a highly reflective surface and subsequently
detected at the transducer.

Since the range1 is directly related to time in ultrasound
imaging, reverberation artifacts can be seen as multiple equal
spaced objects with amplitudes decreasing as depth increases.
Also, the paths of the nonperpendicularly reflected beams
are longer than the paths of perpendicularly reflected beams.
Consequently, highly reflective objects may reappear further
away from the transducer and the multi-path refection artifacts

1The distance from the transducer or depth.

are seen as misplaced objects. In ultrasound images of organs,
muscles, or tissues that are in close proximity of highly
reflective structures such as bones or tissue/gas interfaces,
the undesirable occurrences of reverberation and multi-path
reflection artifacts are common.

An example application to show the importance of the
removal of these artifacts is improving the ultrasound imaging
system so that a 3D rendering of muscles and tissues within
the heart can be better observed and important information
such as the volume and surface area of the heart can be
accurately assessed. In principle, by specifically removing the
reverberation and multi-path reflection artifacts caused by the
highly reflective nature of the ribs we offer improvements to
the B mode or M mode ultrasound images so that the motions
and borders of the myocardium2 of the heart can accurately
be evaluated by an automated algorithm, a physician, or both.
Additionally, a 3D rendering that depicts the surface of the
heart and volume information using these 2D images is not
adversely skewed by these common artifacts.

An appropriately placed short axis scans of the left ventricle
will show the myocardium contracting and expanding as the
heart repeats its end diastole to end systole cycle. In acquiring
a short axis view of the heart, the ultrasonic sound wave must
traverse through or around the ribs. The highly reflective nature
of the ribs can cause reverberation and/or multi-path artifacts
to appear within the region of interest that is over or near
the mycardium. The presence of these artifacts can obscure
parts of the myocardium and makes determining its motions
and borders problematic. We attempt to illustrate the problem
in Fig. 2(a) where a typical short axis B mode ultrasound
image of the left ventricle of a mouse heart is shown. In
Fig. 2(a) the approximated location of the inner left ventricle
myocardial border is shown by the ellipse. The reverberation
or multi-path reflection artifacts most probably caused by the
ribs are are seen as bright objects. We have highlighted these
artifacts with a bold “A” in Fig. 2(a). A B mode image
that isolates these artifacts is shown in Fig. 2(b). It can be
observed that the leftmost section of the myocardium are made
ambiguous by these artifacts. To accurately assess the health
of the myocardium or other obscured muscle(s)/tissue(s), it is

2The middle and thickest layer of the heart wall, composed of cardiac
muscles [2].



necessary not only to remove these artifacts, but the reflectivity
values of the muscle(s)/tissue(s) obscured by these artifacts
should be accurately preserved.

II. BACKGROUND

A. The Discrete Wavelet Transform

In [3], Mallat’s multiresolution wavelet transform provided
a two dimensional (2D) subband decomposition of an image
that allows perfect reconstruction. Although our proposed
artifact removal method strives to remove certain components
of the original image, perfect reconstruction is still preferred
since no visual information loss due to the transform is
guaranteed. Since one of our proposed goal is to render a
more visually pleasing reverberation and multi-path reflection
artifact free image, our DWT construction emulates the forty-
three channel Gabor filter bank of [4]. The 2D filter bank
composed of 2D Gabor filters in [4] was motivated by physio-
psychological experimental evidence that the early stages of a
biological vision system are well represented by conjointly
well spatial and frequency localized bank of Gabor filters
where the number of channels is in the forties. Another key
characterization of this Gabor filter bank construction is that
the magnitude response of the filters becomes wider and their
magnitudes decrease as the center hortizontal and/or vertical
frequencies increase. With these characterizations in mind we
emulate the Gabor filter bank in [4] with a 2D forty channel
well conjointly localized perfect reconstruction DWT filter
bank. The forty channel 2D DWT decomposition is shown in
Fig. ?? and for comparison purpose the typical thirteen four
level DWT decomposition is shown in Fig.??. Evidence is
provide in [5] that shows the multi-level DWT filter bank is
conjointly well localized when the Coifman quadrature mirror
filter bank (QMF), which maximizes the number vanishing
moment for a given support width, is used. A description of
the Coifman QMF used in our 2D forty channel DWT filter
bank can be found in [6].

B. Hard and Soft Thresholding Methods

For signals corrupted by additive white Gaussian noise such
as in equation (1), a typical denoising method to recover the
noise free signalx(n) is to apply a hard or soft thresholding
operator to the DWT coefficients. These methods are com-
monly referred to as wavelet shrinkage. The hard and soft
thresholding operation are given in equations (2) and (3),resp.
wherew = DWT{y}.

y(n) = x(n) + η(n) (1)

The noise free signal is reconstructed from the threshold
wavelet coefficentŝy = IDWT{w̃} ≈ x whereIDWT{·}
means inverse DWT (IDWT).

w̃(n) =
{

0 if |w(n)| < λhard

w(n) otherwise.
(2)

w̃(n) =

 w(n)− λsoft if w(n) > λsoft

w(n) + λsoft if w(n) < −λsoft

0 otherwise.
(3)

The robustness of the wavelet shrinkage method is depen-
dant on the choice of threshold(s). Some various methods
and criteria to consider in choosing a global or level depen-
dant hard or soft threshold(s) based ona priori known or
estimated noise statistics, signal length, mean squared error,
and smoothness are described in [7]. In [7], [8], and [9], the
wavelet shrinkage denoising of the signaly(n) using hard or
soft thresholding of the DWT coefficient with a global soft
threshold value

λsoft = σ
√

2 ln(N), (4)

or some variant of this threshold whereσ is the standard
deviation of the noise andN is length of the signal, is shown
to be optimal or near optimal in the sense that the mean
squared error is minimized (MMSE) or the maximum of the
mean squared error is minimized (minimax). Additionally the
reconstructed signal of the soft threshold wavelet shrinkage
method, Donoho in [8] claim is nearly as smooth as the
original signal where the smoothness of the reconstructed
signal was determined from a “wide range” of smoothness
metric [8].

As a stringent motivation in our ultrasound artifact removal
algorithm, we desire mean squared error optimality or at least
near optimality in the sense of MMSE or minimax. To prevent
processing artifacts such as unwarranted oscillations (ringing)
or discontinuities, we adhere to the constraint that the recon-
structed signal/image should be equivalently as smoothness as
the original signal/image. We will take advantage of the work
accomplished in [7], [8], and [9] by using the soft threshold
wavelet shrinkage method with the threshold value defined as
in equation (4) in our proposed algorithm.

III. T HE ARTIFACT REMOVAL METHOD

In [10] Bjaerum and Torp proposed an additive model of the
complex demodulated Doppler signal to remove clutter, which
are objects that do not move or move slowly. In modeling the
complex demodulatedIQ data, we adopted a similar additive
model. The model of theIQ data that we have adopted is the
sum of three complex value components

IQ(n, m) = A(n, m) + T (n, m) + η(n, m) (5)

where A(n, m) is the complex value due to the artifacts,
T (n, m) is the complex reflectivity value due to the underlying
muscle(s)/tissue(s) obscured byA(n, m), andη(n, m) is com-
plex valued white noise where the real and the imaginary parts
of η(n, m) are zero mean Gaussian distributed. It is reasonable
to assume that the complex values due to the artifacts and the
reflectivity values due to the underlying muscle(s)/tissue(s) are
independent of each other.

The B mode data is attained by log compressing theL2-
norm of the interpolatedIQ data. The data flow of theIQ
data to B mode data is shown in Fig. 1. Although the B
mode data is used to produce a visually meaningful image for
medical diagnosis, processing theIQ data is better suited for
our current application of removing reverberation and multi-
path reflection artifacts. It is more advantageous to process the
IQ data instead of the B mode data for the following reasons:



IQ - ‖ · ‖ - Interp(·) - log(·) -B mode

Fig. 1. IQ data to B mode image.

• The values of theIQ data encompass a greater dynamic
range than the B mode data. Thus, samples that are
greatly affected by artifacts are more easily distinguish-
able.

• The number of samples ofIQ data is substantially less
than the number of B mode data. Always important to
real time or near real time algorithms is to process the
fewest number of samples.

• The signal to noise ratio (SNR) of theIQ data is greater
than the SNR of the B mode data where SNR is meant as
the ratio of the power due to the underlying muscle/tissue
reflectivity valuesT (n, m) and the power due to white
noiseη(n, m). The reduction in SNR of the B mode data
is due to log compression, which is necessary to render a
image that is within the dynamic range of human vision.

• The real and imaginary part ofT (n, m) are Gaussian
distributed. This detail is required for the optimality or
near optimally of the soft thresholding wavelet shrinkage
method using the threshold given in equation 4. We will
elaborate and establish this detail later in this section.

From the additive model we propose in equation (5), if
a sample is adversely affected by the artifact component,
then theL2-norm of the artifact component is substantially
greater than theL2-norm of the muscle/tissue component, that
is ‖A(n, m)‖ � ‖T (n, m)‖. An estimate of samples where
artifacts are prominent can be determined by thresholding the
L2-norm of theIQ data

ĨQ(n, m) =
{

IQ(n, m) if ‖IQ(n, m)‖ > λ
0 otherwise.

(6)

The estimated artifact dominanted complex datãIQ contains
the complex reflectivity values of the underlying muscle and/or
tissue, which are obscured by the artifact(s). To provide an
estimate of the reflectivity values of the underlying muscle
and/or tissue, we consider the complex reflectivity values of
the underlying muscle or tissuẽT (n, m) of the estimated arti-
fact dominanted complex datẽIQ(n, m) as unwanted additive
noise, that is

ĨQ(n, m) = Ã(n, m) + T̃ (n, m) + η̃(n, m)︸ ︷︷ ︸
noise

. (7)

Applying a wavelet shrinkage algorithm to the real and imag-
inary parts ofĨQ to removeT̃ and η̃, we attain an estimate
of the complex values due only to the artifact̃A. More
precisely, letWreal = DWT{real{ĨQ}} and Wimag =
DWT{imag{ĨQ}} be the 2D DWT of the real and imaginary
image ofĨQ, resp.The soft thresholding ofWreal andWimag

with thresholds

λsoft,real = σreal

√
2 ln(|ĨQ|) (8)

and

λsoft,imag = σimag

√
2 ln(|ĨQ|), (9)

resp., are denoted as̃Wreal andW̃imag, resp.The termσreal

is the standard deviation of elements inIQreal where

IQreal = {real{IQ(n, m)} : ‖IQ(n, m)‖ ≤ λ} (10)

with the sameλ used in equation (6). Likewiseσimag is the
standard deviation ofIQimag where

IQimag = {imag{IQ(n, m)} : ‖IQ(n, m)‖ ≤ λ} (11)

with the sameλ used in equation (6). The term|ĨQ| in equa-
tions (8) and (9) is simply the number of samples where the
L2-norm of theIQ data is greater than theλ of equation (6).

An estimate of the artifacts in equation (7) is determine aŝ̃A = IDWT{W̃real}+ jIDWT{W̃imag}. (12)

A artifact free imageÎQ is attained by subtracting the esti-
mated artifact values of equation (12) from the originalIQ
data, that is

ÎQ = IQ− ̂̃A. (13)

If the componentT̃ (n, m) in the additive model given in
equation (7) can be shown to be Gaussian distributed, then
using the soft threshold of equation (4), which we estimate in
equations (8) and (9), would yield a near optimal estimate of
the artifact valuesÃ(n, m). If the componentT̃ (n, m) were
statistically independent with respect to the sample indices
(n, m) ∈ Z × Z, then optimally in the sense describe by
Donohoet al. in [7], [8], and [9] could justifiably be claimed3.

To establish that̃T (n, m) is Gaussian distributed, we con-
sider the basic characterization of these reflectivity values.
In [11] and [12], Goodman characterize the reflectivity values
produced by ultrasound, coherent optical laser, and synthetic
aperture radar as a sum of complex random phasors

T̃ (n, m) =
∞∑

i=0

ai(n, m)ejϕi(n,m) (14)

where ai(n, m) and ϕi(n, m) are independent with respect
to the variablei ∈ Z and with each other4. This specular
phenomena occurs naturally and normally with these and other
imaging systems. The speckle characterization is due to the
“roughness” of the object being imaged with respect to the
wavelength of the transmitted sound, light, or electro-magnetic
wave. Since T̃ (n, m) is the infinite sum of independent
variables, the Central Limit Theorem implies thatT̃ (n, m) is
Gaussian distributed.

3Since the reflectivity values due to the underlying muscle/tissue are not
statistically independent, the arguments for MMSE or minimax optimality
made by Dohonoet al. cannot be invoked.

4For fixed n, m, i ∈ Z, the conditional probability ofai(n, m) given
ϕi(n, m) is equal to the of the probablity ofai(n, m) and likewise for the
conditional probability ofϕi(n, m) givenai(n, m) is equal to the probability
of ϕi(n, m).



IV. RESULTS

A. Image Artifact Removal

In Fig. 2 we show the B mode images of our proposed
reverberation and multi-path artifact removal algorithm. The
images shown in Fig. 2 are rendered in the same dynamic
range so that an accurate representation of our results can
be displayed. Although our processing is performed on the
IQ data, our end result is to improve the quality of the B
mode image and we use this mode to display our results.
The B mode image in Fig. 2(a) is a short axis view of a
mouse heart where the bold capital “A” signifies the presence
of an artifact and the ellipse represents the approximate
location of the muscle/tissue of interest. In Fig. 2(b) is the
B mode image ofĨQ(n, m) as defined in equation (6) using
λ = 400. The image in Fig. 2(b) contains both prominent
artifacts and muscle(s)/tissue(s), which are obscured. The B
mode image of the near optimally estimated artifact only

reflectivity values ̂̃A of equation (12) is shown in Fig. 2(c).
When compared with the image in Fig. 2(b), the objects and
features in the B mode image of Fig. 2(c) are subtly and
smoothly diminished. Importantly, it is evident from Fig. 2(c)
that no new discontinuity, ripples, blips, or oscilliations are
introduced by our proposed processing. The B mode image
of the approximated artifact free image produced by our
algorithm ÎQ(n, m) is shown in Fig. 2(d). We have yet to
make any objective and quantifiable measurements on the
robustness of our proposed artifact removal algorithm. From a
subjective evaluation of Fig. 2(d), we highlight the following
improvements and observations:

1) The reverberation and multi-path artifacts, which are
evident in Fig. 2(a), are removed.

2) The artifact regions have been replace by textures that
are homogeneous with textures from neighboring re-
gions that were not adversely affected by these artifacts.

3) Artifact free regions are not diminished by our proposed
algorithm.

4) No processing artifacts are visibly evident.
5) Objects of interest are not morphed, warped, skewed, or

disfigured in anyway.
6) The image in Fig. 2(d) is not displayed in the full

contrast range of the human visual system. A contrast
enhancement would render a more visually pleasing
image.

B. 3D Surface Rendering and Volume Estimation

We implement a 3D extenstion of the 2D gradient vector
flow (GVF) active contour (also known as a snake) (cite Xu
and Prince) to preform a 3D rendering from 2D slices. The
volume of the 3D rendering is calculated as the volume of
convex hull of the final 3D GVF snake. In Fig. we shows the
3D contour using unprocessed slices and the volume of this
contour is estimated at (some number). In Fig. we show the 3D
rendering provided by the 3D GVF snake and using artifact
removed slices. The volume enclosed by the 3D contour in
Fig. is (some more accurate number). This result is more

accurate to the true volume. Although our evaluation is far
from complete, this one example shows the artifact removal is
necessary for accurate 3D imaging and our proposed artifact
removal method is promising.

V. CONCLUSION

Ultrasound artifacts due to reverberations or multi-path
reflections are expected when acquiring images of organs,
muscles, tissues,etc. require the ultrasonic sound wave to tra-
verse through or around highly reflective objects such as bones
or various interfaces. We present a wavelet transform method
to replace these artifacts with a near optimal estimate of the
underlying objects, which are obscured by these artifacts. For
several compelling reasons, our processing is performed fully
to the complexIQ data. Using the resulting B mode data
produced by the processedIQ data, we show that the regions
adversely affected by artifacts are replaced with textures that
are homogeneous with textures from surrounding regions not
adversely affected by these artifacts. Additionally, it can be
observed that our proposed artifact removal algorithm is not
detrimental to artifact free regions and no processing artifacts
are introduced.
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(a) The original image with artifacts (A) and approximate
location of myocardium (ellipse).

(b) Unprocessed artifact imagẽIQ usingλ = 400

(c) Estimated artifact only imagễA. (d) Artifact free imageÎQ(n, m)

Fig. 2. B mode version of original, unprocessed artifact, processed artifact, and artifact free images.
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ABSTRACT

A novel stochastically driven filtering method to despeckle B
mode ultrasound images is presented. This method is motivated by
viewing the pixel values as a stochastic process and removing out-
liers, where outliers are defined by local extrema. These outliers
are removed by local averaging. This produces another image with
new outliers (local extrema) and the process is iteratively repeated.
With each iteration homogeneous regions become smoother while
edges that defined these regions remain preserved. To evaluate the
performance of our proposed method in satisfying these two op-
posing goals we develop a modified Fisher discriminant contrast
metric. Larger values of this metric indicate better performance in
reducing each intraregion or intraclass variance and increasing the
difference of interregion or interclass means.

1. INTRODUCTION

In applications where speckle precludes successful image analysis
and removal is desired, speckle is considered noise and its removal
as an image restoration problem. Speckle is a common phenom-
ena found in many imaging modalities such as optical laser, syn-
thetic aperture radar, and ultrasound. Many despeckling methods
have been proposed with improving these imaging modalities in
mind. The despeckling success of the various proposed algorithms
are usually subjectively assessed. A fair quantitative evaluation in
many cases is avoided.

Our concern is despeckling B mode ultrasound images to aid
medical diagnosis. Wagner et al. in [1, 2] gives a description of
the statistical characteristics of B mode ultrasound speckle. The
assumptions of the cause and basic characterizations of ultrasound
speckle coincide with Goodman’s assumptions and resulting sta-
tistical characterizations of speckle caused by a coherent laser
in [3, 4]. Although these characterizations of speckle are insight-
ful, an image model like the additive and multiplicative ones in
equations (1) and (2), resp., is not offerred. Two typical image
models are �������
	���
���������	������������
	��

(1)

for the additive noise case and�������
	���
���������	�����������	��
(2)

for the multiplicative noise case where
�������
	��

is the noise com-
ponent. Most image restoration methods are specific to the prob-
lem being addressed. The restoration problem or motivation for a

This work was supported by NIH NIBIB grant EB001826 and US
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reasonable solution are generally constrained by the modeling of
the noisy image.

We give a brief overview of various despeckling algorithms
proposed for different imaging modalities and applications. A
novel stochastically driven method to remove or reduce ultrasound
speckle is presented. Lastly, we provide a quantitative assessment
of the results of our proposed method and those of other despeck-
ling methods.

2. VARIOUS DESPECKLING METHODS

Nagao and Matsuyama in [5] proposed a recursive edge preserving
smoothing algorithm. One iteration of this algorithm replaces each
pixel value with the mean of some segment ��� originating from�������
	��

and the variance of ��� is the minimum variance attained
from a set of variances in all eight directions. Precisely,���������	���
���� ��� � � (3)

where
���"! �

is the expected value operator,#%$'& � ��� ��
�(�) *�+ #%$'& � �-, �/.
for 0 
�1'�324�65%�3737873� 9;:

and �-< � �>= � ��? �3787373� ��@ are equal length segments, which origi-
nate from

�������
	��
and span all eight directions. This recursion is

allowed to continue until convergence in most of the pixel values
is established.

Lee in [6] proposed methods to contrast enhance an image
and to restore an image corrupted by noise as define in equa-
tions (1) or (2). The method in [6] proposes to adaptively locally
smooth in homogeneous regions while regions containing edges or
salient textures are preserved. This algorithm adaptively chooses
a weighting factor A between zero and one so that the new pixel
value

���������	��
is set at���������	���
CBD� A ���������
	��FEGBH�

(4)

where
B

is the mean in some window. The weighting factor A is
adaptively determined as

A 
JI ? E I ?KI ? (5)

where I ? is the local variance in the some window. The noise
variance is denoted as I ?K and must be known a priori. WhenI ?�L I ?KNM
O1

, the gain parameter is approximately one, in which
case the filter in equation (4) is the identity filter. If the local vari-
ance I ? is greater than but nearly equal to the global noise variance



I ?K , then the filter specified by equation (4) is a local averaging low
pass filter.

When the image is degraded by multiplicative noise as in equa-
tion (2), then Lee in [6] recasts the image as an additive noise
model of the form���������	���
 � ��������	������ ��������	�� ���

(6)

where
� �������	��


are chosen so that the mean squared error of
the multiplicative model from equation (2) and the additive model
in equation (6) is minimized. Recasting as an image with additive
noise, the adaptative filter defined in equation (4) can be used and
the gain parameter A is redefined as

A 
 B K
�B ?� I ?K � B ?K � (7)

where
B � is the approximated local mean of the ideal image��������	��

determined as B � 
 BB K (8)

within some fixed window and
B

is the local mean of
�������
	��

.
The variable � is determined as� 
 I ? � B ?I ?K � B ?K

EGB ?� (9)

where I ? is the local variance of
�������
	��

within some window.
The Frost filter given in [7] consists of determining a filter� ����� ��	�� �

, so that in a local homogeneous region of
�������
	��

and
in the presence of white noise, the expection criterion��� ����������	��FE ���������	���� ?��

(10)

is minimized. The term
���������	��

is a windowed weighted sum
about some constrained ideal image

��������	�����������	���
 ��
��� �����! � ��� � ��	 � ����������� � ��	 ��	 � �
(11)

where " is some odd dimensional window. They derived the filter
that minimizes equation (10) as� ��� � ��	 � ��
$#&%('*),+ . -;� � � � � � �3.

(12)

where % 
/. 5 $�0 B KI K21 ? 0 2 �43 B I65 ? 1 ) = � $ � (13)#
is some normalizing constant, $ is an region dependant con-

stant,
B K is the mean of the noise, I K is the standard deviation of

the noise,
B

and I are the local mean and local standard devia-
tion of

��������	��
, resp. The function 798;:=<�: E?>@


is some
symmetric function like 7 ������	���
BA � ? ��	 ? .

The linear minimum mean squared error estimate of the ideal
noise free image given by Kuan et al. in [8] is defined as���������	���
CBD�DC ? E I ?KC ? ���������
	��FEGBH�

(14)

where
B

is the local variance in some window about
�������
	��

andC ? is the local variance in some weighted window about
�������
	��

.
The local weighted variance C ? is defined asC ? 
 2E ��F$� ��
��� �����! � ��� � ��	 � �6������� � � � ��	�� 	 � � E BH� ?

(15)

where
��
��� ��� � ��� � ��	 � � 
 2

and " is some odd dimensional

square window.
The adaptive weighted median filter (AWMF) of Loupas et al.

in [9] models the ultrasound image as�������
	���
���������	����HG �������"	�����������	�� 7
(16)

From the image model given in equation (16) and when the ideal
image is equal to a constant in some local neighborhood, thenI ? 
JI I ?K (17)

where I ? and I ?K are the local variance of the observed image and
the variance of the noise, resp. The AWMF is defined as���������	���
�	&'LK 0 $ �NMD����� � ��	 � � �3737873�6����� � ��	 � �O P�Q RSUT �
�V� ���XW Y (18)

for
��� ��	��

in some window about
�����
	��

and

� ��� � ��	 � ��
 &[Z[\ ��K^]&M � � 1'�
1;�HE I I ? A � � ? ��	 � ?B Y (19)

where &[Z[\ ��K^]�+;! :
means round to the nearest non-negative inte-

ger,
I

is some constant,
B

is the the local mean, and I ? is the local
variance. The constant

I
and the window term � � 1'�
1;�

determines
the AWMF’s ability to preserve edges.

Yu and Acton in [10] proposed the speckle reducing
anisotropic diffusion (SRAD) method. The SRAD algorithm it-
eratively filters a nonzero valued image

����_F�a`?b
1;� 
J����_F�a` �
ac-

cording to c ����_F�a`?bad
�c d 
JK 0 # � I4��e;��f ����_F�a`?bad
� �
(20)

and
c ����_F�a`?bad
�chg� iiii j T klW 
�1

(21)

where

g�
is the outward normal vector to the border of m . The

diffusion coefficient
I4�"! �

is defined either as the quotientI4��e ��_F��`?bad
����
 e
n< �Xd
� �9e ?< �Xd
�e n< �Xd
� �oe ? ��_F��`?bpd
� (22)

or as the exponential functionI4��e ��_F��`?bpd
����

exp 0 e ?< �Xd
�FEqe ? ��_F�a`?bad
�e n< �Xd
� �oe ?< �Xd
� 1 7

(23)

In both equations (22) and (23), if
e ��_F�a`?bad
�srte < �Xd
� , thenI4��e ��_F��`?bad
����r 2

and equation (20) is a local smoothing opera-
tor. If

e ��_F�a`?bad
� L e < �Xd
� , then the diffusion coefficient is very
small and smoothing in a local region around

��_F�a` �
is suppressed.

When at time
d
, if

��_F��` �
resides in a homogeneous region, then

smoothing can be promoted by allowing
e ��_F��`?bad
�(r$e < �Xd
� . When��_F��` �

lie on an edge, then defining
e ��_F�a`?bad
� L e < �Xd
� would pro-

hibit edge deterioration. The function
e �"! �

is defined ase ��_F�a`?bad
��
vuwwwwx =? 32y z � y� 5 ? E ==V{ 3 z(| �� 5 ?342 �~} =n!� 3 z(| �� 5�5 ? 7
(24)

SRAD requires initialization of
e < �Xd
� , which is determined by cal-

culating the mean and standard deviation within a homogeneous
region where speckle is prevalent.



3. THE SQUEEZE BOX FILTER

The methods in section 2 evaluate every sample in a image and
adaptively determines whether to smooth (locally average) or not.
The iterative filtering method we presented in this section only
considers samples which are outliers of some probability density
function (PDF) and applies local smoothing to these outliers. The
local extrema are considered outliers and are not used in the de-
termination of the local mean. The choice of the neighborhood�

is extremely important, since the mean of some PDF is deter-
mined by samples in

�
. Each iteration produces a sequence with

locally reduced variance. The local extrema of the new sequence
are consider as outliers and the process is iterated. The steps of our
proposed iterative method are as follow:

1. Each iteration 0 begins by determining the set of locations
of local maxima and local minima. The locations of these
extrema are defined by the set
��� 
O+%�����
	���.�� , ) = ������	��

meets condition 1 or 2
:

Condition 1:
� , ) = ������	������ , ) = ����� A ��	 �����

Condition 2:
� , ) = ������	���	�� , ) = ����� A ��	 �����

where A �
� 
 E 2
or

2
.

2. Without using the local extrema values, our algorithm re-
places the extremum with the local mean taken from neigh-
boring samples. For all

������	��N� ���
� , �����
	���
 2. � . �T � � � W��
� � , ) = � A �
��� (25)

where
�

is some local neighborhood of
������	��

,
. � .

is the
cardinality of set

�
, and

�����
	����� �
.

3. If convergence is not attained, that is�
� � � � . � , ) = �����
	��FE�� , ������	��3.����

(26)

for some predefined
��� 1

, then another iteration is per-
formed. If convergence is attained, then no further improve-
ments can be attained with this filtering method.

By removing outliers at each iteration, this method reduces
the local variance at each pixel. In effect, this method produces a
convergent sequence of images by squeezing the stochastically dis-
tributed pixel values to a limiting value. Thus, we call this stochas-
tically driven method the squeeze box filter (SBF).

4. EXPERIMENT AND RESULTS

To evaluate the performance of the proposed SBF against the other
methods in section 2, a phantom, consisting of a background class
with pixel values set at one and two other classes with pixel values
set at either one or ten, is used. Each nonbackground class consist
of five bright disks or five dark disks of various diameters vertically
aligned.

The phantom and the Field II simulation [11], which is the
image being processed in this evaluation, are shown in Figs. 1(a)
and 1(b), resp. The simulation is constructed with the transducer
at the top of the image. The focus point of the simulation is set
at 70mm axial distance from the transducer and at lateral position
0mm. In this simulation, the spatial varying point spread functions

are shown along the column at lateral position -15mm and at ax-
ial distances 40mm, 50mm, 60mm, 70mm, and 80mm. Fig. 1(c)
shows the SRAD result applied to the simulated image in Fig. 1(b).
Fig. 1(d) is the resulting image of SBF applied to the same image.
It can be observed that the large intensity (white) disks on the right
side of Fig. 1(d) is brighter and the background class is smoother
with SBF restoration.
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Fig. 1. (a) Three class phantom, (b) Field II simulation, (c) output
due to SRAD, and (d) output due to SBF.

To quantitatively evaluate which despeckling method provides
the best improvements to an ultrasound image, we use a modified
Fisher discriminant contrast metric. This measure determines how
well an algorithm reduces variances in homogeneous classes while
keeping the distinct classes well separated and preserving edges.



This metric is defined as

� � $ � � �������

�
���� �

� B 	�
 EGB 	�� � ?

�

� � = I ?	�

�

(27)

B 	�
 �����
 2. � � . �T � � �hW�� 	�
 � �
� � �����
	�� �
(28)

I ?	�
 �����
 2. � � . �T � � �hW�� 	�
 ��� �
� � ������	��HEGB 	�
 � ? � (29)

where � �
� � is the resulting image due to algorithm $ � � , and
. � � .

denotes the number of pixels in class
� � . To avoid sensitivity to

resolution, we normalize the measure in equation (27) as�� � $ � � � �����
 � � $ � � �� � 0 K � (30)

where � , � 

� . This performance metric

�� � $ � � � is called ul-
trasound despeckling assessment index (USDSAI). If a despeck-
ling algorithm produces classes that are well separated, then the
numerator in equation (27) will be large. If the segmentation or
restoration algorithm produces small intra-class variances, then the
denominator of equation (27) will be small. An algorithm that at-
tains a large numerator and a small denominator will yield a large
USDSAI quantity

�� � $ � � � . Large USDSAI would indicate that $ � �
produces desirable restoration or enhancement results.

To present an objective comparison, we perform an exhaustive
search, varying the parameters of each algorithm in section 2 and
SBF so that the USDSAI value

�� � $ � � � is maximized. The USD-
SAI values

�� � $ � � � of each filter are given in Table 1. The USD-
SAI in Table 1 are the results attained by an exhaustive efforts to
maximize this metric. The result of SBF was attained by using the
values within a � <�� square window minus the extremum value
to determine the local mean at each extrema. The maximum US-
DSAI of the SBF is 2.1144 and took 542 iterations to attain. The
USDSAI of SRAD and SBF exceeds the performance of the other
despeckling methods with SBF performing better than SRAD, al-
beit at a much greater computational cost and degradation to rel-
evant point scatters that is SBF totally removed the point scatters
along column 15 while SRAD retained these features.�� � $ � � �

F Nagao 1.3651

I Lee 1.2097

L Frost 1.0457

T Kuan 1.0016

E AWMF 1.1025

R SRAD 1.8187

S SBF 2.1144

Table 1. USDSAI for the various algorithms tested.

5. CONCLUSION

An overview of some of the prominent speckle removing algo-
rithms for various imaging modalities is presented. These de-
speckling methods were used to assess the performance of a novel
stochastically driven SBF method. A visual inspection shows that
SRAD is better at preserving relevant point scatters than SBF.
A modified Fisher discriminant metric was used to quantify the
contrast improvement performance of each despeckling algorithm.
The quantitative evaluation using the USDSAI metric shows that
the SBF method performed the best contrast improvement to the
Field II simulated image while reduction to intraclass variance is
on par with SRAD.
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Abstract— A novel stochastically driven filtering method to
despeckle B mode ultrasound images is presented. This method is
motivated by viewing the pixel values as a stochastic process and
removing outliers, where outliers are defined by local extrema.
These outliers are removed by local averaging. This produces
another image with new outliers (local extrema) and the process
is iterated. With each iteration homogeneous regions become
smoother while edges that defined these regions are preserved.
By allowing a dynamically varying window to determine the local
mean, we achieve equivalent results with fewer iterations.

I. I NTRODUCTION

Speckle is a common phenomena found in many imaging
modalities such as optical laser, synthetic aperture radar, and
ultrasound. Goodman’s intuitive explanation of the appearance
of speckle is due to the signal being composed of a sum
of independent complex components caused by the random
roughness of the object being imaged [1], [2]. Speckle can be
modeled as a complex random walk where individual complex
components are independent of each other and the phase and
amplitude of each component are also independent. Since
speckle is a common and prevalent phenomena in ultrasound
imaging, Goodman’s intuition and analysis is relevant.

In Fig. 1, we show a block diagram of the ultrasound data
flow from the real-valued digitizedRF signal detected at the
transducer to the intermediate complex-valuedIQ data to the
real-valuedB mode data. The processing that occurs between
theRF andIQ data is proprietary to each ultrasound manufac-
ture and is generally privileged information. The probability
distribution of the norm of theIQ to produceB mode data
is considered in Goodman’s analysis found in [2]. Exactly
applying Goodman’s analysis to theIQ data, it can be derived
that the samples of homogeneous regions of theB mode data
are Rayleigh or more generally Rician distributed. As with any
probability distribution function (PDF), outliers will occur and
values close to the mean occur more frequently. Determining
which samples are outliers and consistently replacing these
outlier with a meaningful value is difficult.

Numerous despeckling methods indiscriminately scrutinize
every pixel values and rely on local statistics like the local
mean, local variance, and/or the gradient to determine how
aggressively a pixel should be smoothed. These local statistics
are usually determined by a fixed window size usually of odd

dimensions3× 3, 5× 5, and so on. One of the first of these
filters is the Nagao and Matsuyama filter proposed in [3],
which recursively replaces each pixel value with the mean
of the minimum variance segment from all eight direction
originating from the pixel under scrutiny.

A more profound and adaptive despeckling method was
proposed by the Lee filter in [4]. This algorithm adaptively
chooses a weighting factork between zero and one so that
the new pixel valueĴ(n, m) is set at

Ĵ(n, m) = µ + k(J(n, m)− µ) (1)

whereµ is the mean in some window. The weighting factor
k is adaptively determined as

k =
σ2 − σ2

η

σ2
(2)

whereσ2 is the local variance in the some window. The noise
variance is denoted asσ2

η and must be knowna priori. When
σ2 � σ2

η 6= 0, the gain parameter is approximately one, in
which case the filter in equation (1) is the identity filter. If the
local varianceσ2 is greater than but nearly equal to the global
noise varianceσ2

η, then the filter specified by equation (1) is
a local averaging low pass filter.

The Frost filter given in [5] consists of determining a filter
f(n′,m′), so that in a local homogeneous region and in the
presence of white noise, the expection criterion is minimized.
The term Ĩ(n, m) is a windowed weighted sum about some
constrained ideal imageI(n, m)

Ĩ(n, m) =
∑

n′,m′∈W

f(n′,m′)I(n + n′,m + m′) (3)

whereW is some odd dimensional window.
The linear minimum mean squared error (LLMSE) estimate

of the ideal noise free image given by Kuanet al. in [6] is
defined as

Ĩ(n, m) = µ +
ω2 − σ2

η

ω2
(J(n, m)− µ) (4)

whereµ is the local variance in some window aboutJ(n, m)
andω2 is the local variance in some weighted window about
J(n, m). The local weighted varianceω2 is defined as

ω2 =
1

N ′M ′

∑
n′,m′∈W

w(n′,m′)(J(n+n′,m+m′)−µ)2 (5)



where
∑

n′,m′

w(n′,m′) = 1 and W is some odd dimensional

square window.
The adaptive weighted median filter (AWMF) in [7] models

the ultrasound image as

J(n, m) = I(n, m) +
√

I(n, m)η(n, m). (6)

From the image model given in equation (6) and when the
ideal image is equal to a constant in some local neighborhood,
then

σ2 = cσ2
η (7)

whereσ2 andσ2
η are the local variance of the observed image

and the variance of the noise,resp.The AWMF is defined as

Ĵ(n, m) = median

{
J(n′,m′), . . . , J(n′,m′)︸ ︷︷ ︸

w(n′,m′)

}
(8)

for n′,m′ in some window about(n, m) and

w(n′,m′) = round+

{
w(0, 0)− cσ2

√
n′2 + m′2

µ

}
(9)

where round+{·} means round to the nearest non-negative
integer,c is some constant,µ is the local mean, andσ2 is the
local variance.

The filtering method of Yu and Acton in [8], the speckle
reducing anisotropic diffusion (SRAD) method incorporates
gradient information as well as local statistics to determine
a smoothing kernel. The SRAD algorithm iteratively filters a
nonzero valued imageJ(x, y; 0) = J(x, y) according to

∂J(x, y; t)
∂t

= div[c(q)∇J(x, y; t)] (10)

and
∂J(x, y; t)

∂~n

∣∣∣∣
B(Ω)

= 0 (11)

where~n is the outward normal vector to the borderB(Ω). The
diffusion coefficientc(·) is defined either as the quotient

c(q(x, y; t)) =
q4
0(t) + q2

0(t)
q4
0(t) + q2(x, y; t)

(12)

or as the exponential function

c(q(x, y; t)) = exp

(
q2
0(t)− q2(x, y; t)
q4
0(t) + q2

0(t)

)
. (13)

In both equations (12) and (13), ifq(x, y; t) ≈ q0(t), then
c(q(x, y; t)) ≈ 1 and equation (10) is a local smoothing
operator. Ifq(x, y; t) � q0(t), then the diffusion coefficient
is very small and smoothing in a local region around(x, y)
is suppressed. When at timet, if (x, y) resides in a homoge-
neous region, then smoothing can be promoted by allowing
q(x, y; t) ≈ q0(t). When (x, y) lie on an edge, then defining
q(x, y; t) � q0(t) would prohibit edge deterioration. The
function q(·) is defined as

q(x, y; t) =

√√√√√ 1
2

(
|∇J|

J

)2

− 1
16

(∇2J
J

)2

(
1 +

(
1
4

) (∇2J
J

))2 . (14)

SRAD requires initialization ofq0(t), which is determined
by calculating the mean and standard deviation within a
homogeneous region where speckle is prevalent.

Determining the appropriate window to determine local
statistics is important to these and other algorithms. We offer
a novel despeckling method that iteratively removes outliers
by determining the local mean and standard deviation from an
adaptively varying window. The adaptively determined mean
is used to replace the outlying values of an B mode ultra-
sound image causing homogeneous regions to be aggressively
smoothed while preservation of edges is profoundly respected.

II. T HE SQUEEZEBOX FILTER

We propose an iterative filtering method that considers local
extrema of theB mode imageJ(n, m) as outliers and only
applies local smoothing to these outliers. The local extrema
are considered outliers and are not used in the determination
of the local mean. The choice of the neighborhood or window
N is extremely important, since the mean of some PDF is
determined by samples inN . An explanation of a robust
method to determine this window will be given in section III.
Each iteration of our proposed method produces a sequence
with locally reduced variance. The local extrema of the new
sequence are consider as outliers and the process is iterated.
The steps of our proposed iterative method are as follow:

1) Each iterationi begins by determining the set of loca-
tions of local maxima and local minima. The locations
of these extrema are defined by the set

NE = {(n, m) | Ji−1(n, m) meets condition 1 or 2}

Condition 1:Ji−1(n, m) > Ji−1(n + k,m + l)
Condition 2:Ji−1(n, m) < Ji−1(n + k,m + l)

wherek, l = −1 or 1.
2) Without using the local extrema values, our algorithm

replaces the extremum with the local mean taken from
neighboring samples. For all(n, m) ∈ NE

Ji(n, m) =
1
|N |

∑
(k,l)∈N

Ji−1(k, l) (15)

whereN is some local neighborhood of(n, m), |N | is
the cardinality of setN , and(n, m) /∈ N .

3) If convergence is not attained, that is∑
∀n,m

|Ji−1(n, m)− Ji(n, m)| > ε (16)

for some predefinedε > 0, then another iteration is
performed. If convergence is attained, then no further
improvements can be attained with this filtering method.

By removing outliers at each iteration, this method reduces
the local variance at each pixel. In effect, this method produces
a convergent sequence of images by squeezing the stochasti-
cally distributed pixel values to a limiting value. We call this
stochastically driven method the squeeze box filter (SBF).
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Fig. 1. RF data toIQ data toB mode image.

III. W INDOW SELECTION

Given Ji−1(n, m) ∈ NE is an extremum value at some
iterationi, some considerations for a neighborhood or window
N aboutJi−1(n, m) to determine the local mean are

1) the samples ofN should be from the same homogeneous
region asJi−1(n, m); and

2) to get an accurate estimate of the actual mean within a
homogeneous region, the cardinality|N | should be as
large as possible.

To effectively and dynamically determine the windowN , a
multiplicative image model of equation (17) is used

J(n, m) = I(n, m)η(n, m) (17)

where I(n, m) is the speckle free image andη(n, m) is a
white stationary random process. This model is supported by
the empirical evidence and deductive arguments given in [9],
[10]. In a constant homogeneous regionNc, I(n, m) = c 6= 0
for all (n, m) ∈ Nc, the mean to standard deviation ratio
RNc

(n, m) is independent ofc, that is,

RNc
(n, m) =

µNc

σNc

(18)

where µNc
and σNc

are the mean and standard deviation
within Nc, resp.Let R be the ratio defined by equation (18)
determined from a known non-zero constant region. At each
outlier, we dynamically choose a rectangular window of di-
mensionN ′ ×M ′ so that|R − RN×M | is minimized where
RN×M is the ratio of the mean to standard deviation within a
rectangularN×M window centered at the outlierJi−1(n, m).
The SBF despeckling method using this dynamically varying
window (SBF-DVW) replaces each outlier values with the
mean determined from this dynamically varying window less
the outlier value.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of our algorithm we created
a phantom and the Field II simulation [11] of the phantom,
which is the image being processed in this evaluation. The
phantom and the Field II simulation are shown in Figs. 2(a)
and 2(b),resp.The phantom consist of the background class
with pixel values set at one. The phantom also consist of
two other classes with pixel values set at either one or ten.
Each nonbackground class consist of five bright disks or
five dark disks of various diameters vertically aligned. The
Field II simulation of an actualB mode ultrasound image
is constructed with the transducer at the top of the image.
The focus point of the simulation is set at 70mm axial
distance from the transducer and at lateral position 0mm. In
this simulation, the spatial varying point spread functions are
shown along the column at lateral position -15mm and at axial
distances 40mm, 50mm, 60mm, 70mm, and 80mm. Fig. 2(c)

shows the SRAD result applied to the simulated image in
Fig. 2(b). Fig. 2(d) is the resulting image of SBF-DVW applied
to the same image. The SBF-DVW we implemented allowed
for a rectangular window with odd row and column dimensions
to vary N,M = 3, 5, . . . , 41. It can be observed that the
large intensity (white) disks aligned on the center column of
Fig. 2(d) is brighter and the background class is smoother with
SBF-DVW method. The visual results of SBF using a fixed
9×9 is almost indistinguishable from the result of SBF-DVW.
Thus only the result of SBF-DVW is shown in Fig. 2.

To quantitatively evaluate performance we use a modified
Fisher discriminant contrast metric. This measure determines
how well an algorithm reduces variances in homogeneous
classes while keeping the distinct classes well separated and
preserving edges. This metric is defined as

Q(alg)
def
=

∑
k 6=l

(µCk
− µCl

)2

3∑
k=1

σ2
Ck

, (19)

µCk

def
=

1
|Ck|

∑
(n,m)∈Ck

Jalg(n, m), (20)

σ2
Ck

def
=

1
|Ck|

∑
(n,m)∈Ck

(Jalg(n, m)− µCk
)2, (21)

whereJalg is the resulting image due to algorithmalg, and
|Ck| denotes the number of pixels in classCk. To avoid sensi-
tivity to resolution, we normalize the measure in equation (19)
as

Q̃(alg)
def
=

Q(alg)
Q(id)

(22)

where Jid = J. This performance metric̃Q(alg) is called
ultrasound despeckling assessment index (USDSAI). If a de-
speckling algorithm produces classes that are well separated,
then the numerator in equation (19) will be large. If the
segmentation or restoration algorithm produces small intra-
class variances, then the denominator of equation (19) will
be small. An algorithm that attains a large numerator and a
small denominator will yield a large USDSAI quantitỹQ(alg).
Large USDSAI would indicate thatalg produces desirable
restoration or enhancement results.

An objective quantitative comparison is performed by vary-
ing the parameters over a wide range of reasonable values
for each algorithm listed in Table I, the number of iteration
used in SBF with a fixed9 × 9 window, and SBF-DVW so
that the USDSAI valueQ̃(alg) is maximized. The USDSAI
valuesQ̃(alg) of each filter are given in Table I. The USDSAI
in Table I are the results attained by an exhaustive effort to
maximize this metric. The results of the fixed window SBF



(a) The Phantom (b) Field II simulation

(c) SRAD (d) SBF-DVW

Fig. 2. (a) Three class phantom, (b) Field II simulation, (c) output due to
SRAD, and (d) output due to SBF-DVW.

and SBF-DVW exceed the results of the other methods. The
result of SBF was attained by using the values within a9× 9
square window minus the extremum value to determine the
local mean at each extrema. The maximum attained USDSAI
of the SBF is 2.1491 and took 810 iterations to attain. The
maximum USDSAI of SBF-DVW is slightly better at 2.1716,
but occurred with only 143 iterations. This result is promising
in which we maybe able to decrease the run time of our
proposed SBF algorithm while maintaining excellent contrast
improvements.

V. CONCLUSION

Based on the intuition that speckle is a random stochastic
process, we develop a novel despeckling method SBF, which

Q̃(alg)

F Nagao 1.0315

I Lee 1.2007

L Frost 1.0446

T Kuan 1.0012

E AWMF 1.0959

R SRAD 1.8603

S SBF 2.1491

SBF-DVW 2.1716

TABLE I

USDSAI FOR THE VARIOUS ALGORITHMS TESTED.

is aimed at replacing outliers with the local mean. The SBF
and SBF-DVW methods attained better qualitative and quanti-
tative results than the other well known published despeckling
methods. By allowing a dynamically varying window in which
to determine the local mean, SBF-DVW attain slightly better
results than SBF with a fixed window with fewer iterations.
This result is promising in that we can achieve a faster
algorithm without compromising performance.
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